Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncol Lett ; 18(3): 2977-2984, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31452776

RESUMEN

Treatment strategies involving tyrosine kinase inhibitors (TKIs) for patients with non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations have advanced significantly; however, challenges still remain regarding the development of resistance. It has been reported that receptor tyrosine kinase-like orphan receptor 1 (ROR1) acts as a hepatocyte growth factor receptor (MET) and c-Src substrate, and that the extracellular domain of ROR1 is associated with EGFR to sustain EGFR-ERBB3-PI3K signaling. Our previous study reported that blocking ROR1 significantly decreased the activity of key signal molecules in the AKT/mammalian target of rapamycin (mTOR) signaling pathway, which was associated with a significant increase of apoptosis and significant decrease of proliferation of lung adenocarcinoma cells. The present study hypothesized that inhibiting ROR1 could potentially prevent erlotinib resistance in NSCLC cell lines. Investigations were performed with two erlotinib-resistant cell lines XLA-07 and NCI-H1975, and an erlotinib-acquired-resistant cell line PC-9erlo, which was developed from its parental cell line PC-9. It was identified that the inhibition of ROR1 via small interfering RNA treatment significantly improved the anti-proliferation and apoptosis-inducing roles of erlotinib in TKI-resistant tumor cells. This was in accordance with the activity of key molecules of the AKT/mTOR signaling pathway, including glycogen synthase kinase-3α/ß (GSK-3α/ß), phosphatase and tensin homolog (PTEN), AKT, mTOR and ribosomal protein S6 kinase ß-1 (p70S6K). The current data suggest that targeting ROR1 is a potential novel treatment strategy for patients with ROR1-positive NSCLC, particularly those with acquired resistance to EGFR-TKI.

2.
Int J Clin Exp Pathol ; 11(10): 4759-4770, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31949551

RESUMEN

The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a type I surface transmembrane protein that contributes to progression of tumor-cell growth and metastasis. We and others have shown that the roles of ROR1 include inhibiting apoptosis, potentiating EGFR signaling, and inducing proliferation in lung cancer, but the roles and mechanisms of ROR1 in lung adenocarcinoma metastasis have not been elucidated. Here we chose four lung adenocarcinoma cell lines, PC9 (erlotinib-sensitive), PC9erlo (acquired erlotinib-resistant), NCI-H358 (partial erlotinib-resistant), and NCI-H1975 (erlotinib-resistant) as cell models to simulate the clinical situation. We found that ROR1 prompted epithelial to mesenchymal transition (EMT) by increasing the expression level of a key epithelial gene, E-cadherin, while decreasing the expression level of the key mesenchymal gene vimentin. Silencing ROR1 by siRNA significantly reduced the migration and invasion of lung adenocarcinoma cells in vitro and also significantly inhibited the phosphorylation of Akt (Ser473), mTOR (Ser2448), Raptor (Ser792) and p70S6K (Thr389) in all four cell lines. This strongly supports our proposal that ROR1 may play a central role in tumor progression and metastasis in lung adenocarcinoma through mTOR signaling, regardless of its EGFR-TKI sensitivity status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA