Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(8): e0161234, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536995

RESUMEN

BACKGROUND: Karrikins are smoke-derived compounds that provide strong chemical cues to stimulate seed germination and seedling growth. The recent discovery in Arabidopsis that the karrikin perception system may be present throughout angiosperms implies a fundamental plant function. Here, we identify the most potent karrikin, karrikinolide (KAR1), in biochars and determine its role in species unique plant responses. METHODS: Biochars were prepared by three distinct commercial-scale pyrolysis technologies using systematically selected source material and their chemical properties, including karrikinolide, were quantified. Dose-response assays determined the effects of biochar on seed germination for two model species that require karrikinolide to break dormancy (Solanum orbiculatum, Brassica tourneforttii) and on seedling growth using two species that display plasticity to karrikins, biochar and phytotoxins (Lactuca sativa, Lycopersicon esculentum). Multivariate analysis examined relationships between biochar properties and the plant phenotype. FINDINGS AND CONCLUSIONS: Results showed that karrikin abundant biochars stimulated dormant seed germination and seedling growth via mechanisms analogous to post-fire chemical cues. The individual species response was associated with its sensitivity to karrikinolide and inhibitory compounds within the biochars. These findings are critical for understanding why biochar influences community composition and plant physiology uniquely for different species and reaffirms that future pyrolysis technologies promise by-products that concomitantly sequester carbon and enhance plant growth for ecological and broader plant related applications.


Asunto(s)
Biodiversidad , Carbón Orgánico/análisis , Desastres , Incendios , Furanos/análisis , Piranos/análisis , Plantones/crecimiento & desarrollo , Brassica/crecimiento & desarrollo , Germinación , Lactuca/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Semillas/química , Solanum/crecimiento & desarrollo
2.
Biol Rev Camb Philos Soc ; 90(1): 31-59, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24618017

RESUMEN

Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long-term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed-bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance-exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.


Asunto(s)
Ecosistema , Germinación/fisiología , Plantas/clasificación , Semillas/fisiología , Plantas/genética , Suelo
3.
J Exp Bot ; 65(22): 6723-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25297549

RESUMEN

A specific function for peroxisomal ß-oxidation in inflorescence development in Arabidopsis thaliana is suggested by the mutation of the abnormal inflorescence meristem 1 gene, which encodes one of two peroxisomal multifunctional proteins. Therefore, it should be possible to identify other ß-oxidation mutants that recapitulate the aim1 phenotype. Three genes encode peroxisomal 3-ketoacyl-CoA thiolase (KAT) in Arabidopsis. KAT2 and KAT5 are present throughout angiosperms whereas KAT1 is a Brassicaceae-specific duplication of KAT2 expressed at low levels in Arabidopsis. KAT2 plays a dominant role in all known aspects of peroxisomal ß-oxidation, including that of fatty acids, pro-auxins, jasmonate precursor oxophytodienoic acid, and trans-cinnamic acid. The functions of KAT1 and KAT5 are unknown. Since KAT5 is conserved throughout vascular plants and expressed strongly in flowers, kat2 kat5 double mutants were generated. These were slow growing, had abnormally branched inflorescences, and ectopic organ growth. They made viable pollen, but produced no seed indicating that infertility was due to defective gynaecium function. These phenotypes are strikingly similar to those of aim1. KAT5 in the Brassicaceae encodes both cytosolic and peroxisomal proteins and kat2 kat5 defects could be complemented by the re-introduction of peroxisomal (but not cytosolic) KAT5. It is concluded that peroxisomal KAT2 and KAT5 have partially redundant functions and operate downstream of AIM1 to provide ß-oxidation functions essential for inflorescence development and fertility.


Asunto(s)
Acetil-CoA C-Aciltransferasa/genética , Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Secuencia Conservada , Evolución Molecular , Técnicas de Inactivación de Genes , Complejos Multienzimáticos/metabolismo , Peroxisomas/enzimología , Acetil-CoA C-Aciltransferasa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Biomasa , Segregación Cromosómica , Citosol/metabolismo , Flavonoides/metabolismo , Prueba de Complementación Genética , Germinación , Mutación , Oxidación-Reducción , Peroxisomas/metabolismo , Fenotipo , Semillas/crecimiento & desarrollo
4.
Ann Bot ; 108(5): 933-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21821831

RESUMEN

BACKGROUND AND AIMS: Karrikinolide (KAR(1)) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR(1) is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR(1), and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR(1) may be present in physiologically dormant seeds but may not be expressed under all circumstances. METHODS: Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR(1) when freshly collected and following simulated and natural dormancy alleviation, which included wet-dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. KEY RESULTS: Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR(1) when the seeds were fresh, and the remaining species became responsive to KAR(1) following wet-dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR(1), with the majority of species germinating better in darkness. Germination with and without KAR(1) fluctuated seasonally throughout the seed burial trial. CONCLUSIONS: KAR(1) responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR(1), and a response to KAR(1) can be induced. Three response types for generalizing KAR(1) responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR(1) were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for future application of KAR(1) in weed management.


Asunto(s)
Brassicaceae/efectos de los fármacos , Furanos/farmacología , Germinación/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Malezas/crecimiento & desarrollo , Piranos/farmacología , Semillas/efectos de los fármacos , Brassica/efectos de los fármacos , Brassica/fisiología , Brassicaceae/fisiología , Oscuridad , Lepidium/efectos de los fármacos , Lepidium/fisiología , Luz , Latencia en las Plantas/efectos de los fármacos , Raphanus/efectos de los fármacos , Raphanus/fisiología , Temperatura , Australia Occidental
5.
Ann Bot ; 105(6): 1063-70, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20348089

RESUMEN

BACKGROUND AND AIMS: The smoke-derived compound karrikinolide (KAR(1)) shows significant potential as a trigger for the synchronous germination of seeds in a variety of plant-management contexts, from weed seeds in paddocks, to native seeds when restoring degraded lands. Understanding how KAR(1) interacts with seed physiology is a necessary precursor to the development of the compound as an efficient and effective management tool. This study tested the ability of KAR(1) to stimulate germination of seeds of the global agronomic weed Brassica tournefortii, at different hydration states, to gain insight into how the timing of KAR(1) applications in the field should be managed relative to rain events. METHODS: Seeds of B. tournefortii were brought to five different hydration states [equilibrated at 15 % relative humidity (RH), 47 % RH, 96 % RH, fully imbibed, or re-dried to 15 % RH following maximum imbibition] then exposed to 1 nm or 1 microm KAR(1) for one of five durations (3 min, 1 h, 24 h, 14 d or no exposure). KEY RESULTS: Dry seeds with no history of imbibition were the most sensitive to KAR(1); sensitivity was lower in seeds that were fully imbibed or fully imbibed then re-dried. In addition, reduced sensitivity to KAR(1) was associated with an increased sensitivity to exogenously applied abscisic acid (ABA). CONCLUSIONS: Seed water content and history of imbibition were found to significantly influence whether seeds germinate in response to KAR(1). To optimize the germination response of seeds, KAR(1) should be applied to dry seeds, when sensitivity to ABA is minimized.


Asunto(s)
Ácido Abscísico/farmacología , Brassica/fisiología , Furanos/farmacología , Germinación/efectos de los fármacos , Giberelinas/farmacología , Piranos/farmacología , Semillas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Semillas/fisiología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA