Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164412

RESUMEN

Heteromeric pore-forming proteins often contain recognition patterns or stereospecific selection filters. However, the construction of heteromeric pore-forming proteins for single-molecule sensing is challenging due to the uncontrollability of producing position isomers and difficulties in purification of regio-defined products. To overcome these preparation obstacles, we present an in situ strategy involving single-molecule chemical modification of a heptameric pore-forming protein to build a stereo- and regio-specific heteromeric nanopore (hetero-nanopore) with a subunit stoichiometric ratio of 3:4. The steric hindrance inherent in the homo-nanopore of K238C aerolysin directs the stereo- and regio-selective modification of maleimide derivatives. Our method utilizes real-time ionic current recording to facilitate controlled voltage manipulation for stoichiometric modification and position-based side-isomer removal. Single-molecule experiments and all-atom molecular dynamics simulations revealed that the hetero-nanopore features an asymmetric stereo- and regio-defined residue structure. The hetero-nanopore produced was characterized by mass spectrometry and single-particle cryogenic electron microscopy. In a proof-of-concept single-molecule sensing experiment, the hetero-nanopore exhibited 95% accuracy for label-free discrimination of four peptide stereoisomers with single-amino-acid structural and chiral differences in the mixtures. The customized hetero-nanopores could advance single-molecule sensing.

2.
Nat Commun ; 15(1): 5633, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965237

RESUMEN

An electrochemically homogeneous electrode-solution interface should be understood as spatially invariant in both terms of intrinsic reactivity for the electrode side and electrical resistance mainly for the solution side. The latter remains presumably assumed in almost all cases. However, by using optical microscopy to spatially resolve the classic redox electrochemistry occurring at the whole surface of a gold macroelectrode, we discover that the electron transfer occurs always significantly sooner (by milliseconds), rather than faster in essence, at the radial coordinates closer to the electrode periphery than the very center. So is the charging process when there is no electron transfer. Based on optical measurements of the interfacial impedance, this spatially unsynchronized electron transfer is attributed to a radially non-uniform distribution of solution resistance. We accordingly manage to eliminate the heterogeneity by engineering the solution resistance distribution. The revealed spatially-dependent charging time 'constant' (to be questioned) would help paint our overall fundamental picture of electrode kinetics.

3.
ACS Appl Mater Interfaces ; 16(30): 40100-40110, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39038810

RESUMEN

Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore. We demonstrated an efficient tool of controlling the ssDNA translocation time, via the interplay between the nanopore-ssDNA surface electrostatic interactions and electroosmotic flow, all mediated by the pH-dependent ionization of amino acids lining the nanopore's translocation pathway. Our data also reveal the nonmonotonic, pH-induced alteration of ssDNA average translocation time. Unlike mildly acidic conditions (pH ∼ 4.7), at a pH ∼ 2.8 maintained symmetrically or asymmetrically across the WT α-HL, we evidenced the manifestation of a dominant electroosmotic flow, determining the speeding up of the ssDNA translocation across the nanopore by counteracting the ssDNA-nanopore attractive electrostatic interactions. We envision potential applications of the presented approach by enabling easy-to-use, real-time detection of short ssDNA sequences, without the need for complex biochemical modifications to the nanopore to mitigate the fast translocation of such sequences.


Asunto(s)
ADN de Cadena Simple , Electroósmosis , Proteínas Hemolisinas , Mutagénesis Sitio-Dirigida , Nanoporos , Concentración de Iones de Hidrógeno , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Electricidad Estática
4.
Angew Chem Int Ed Engl ; : e202406677, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825572

RESUMEN

The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30 nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.

5.
J Am Chem Soc ; 146(22): 15053-15060, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776531

RESUMEN

Electrocatalysis is considered promising in renewable energy conversion and storage, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, a hydrodynamic single-particle electrocatalysis methodology is developed by integrating collision electrochemistry and microfluidics to improve the activity of an electrocatalysis system. As a proof-of-concept, hydrogen evolution reaction (HER) is electrocatalyzed by individual palladium nanoparticles (Pd NPs), with the development of microchannel-based ultramicroelectrodes. The controlled laminar flow enables the precise delivery of Pd NPs to the electrode-electrolyte interface one by one. Compared to the diffusion condition, hydrodynamic collision improves the number of active sites on a given electrode by 2 orders of magnitude. Furthermore, forced convection enables the enhancement of proton mass transport, thereby increasing the electrocatalytic activity of each single Pd NP. It turns out that the improvement in mass transport increases the reaction rate of HER at individual Pd NPs, thus a phase transition without requiring a high overpotential. This study provides new avenues for enhancing electrocatalytic activity by altering operating conditions, beyond material design limitations.

6.
Angew Chem Int Ed Engl ; 63(32): e202404170, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781086

RESUMEN

The key to rationally and rapidly designing high-performance materials is the monitoring and comprehension of dynamic processes within individual particles in real-time, particularly to gain insight into the anisotropy of nanoparticles. The intrinsic property of nanoparticles typically varies from one crystal facet to the next under realistic working conditions. Here, we introduce the operando collision electrochemistry to resolve the single silver nanoprisms (Ag NPs) anisotropy in photoelectrochemistry. We directly identify the effect of anisotropy on the plasmonic-assisted electrochemistry at the single NP/electrolyte interface. The statistical collision frequency shows that heterogeneous diffusion coefficients among crystal facets facilitate Ag NPs to undergo direction-dependent mass transfer toward the gold ultramicroelectrode. Subsequently, the current amplitudes of transient events indicate that the anisotropy enables variations in dynamic interfacial electron transfer behaviors during photothermal processes. The results presented here demonstrate that the measurement precision of collision electrochemistry can be extended to the sub-nanoparticle level, highlighting the potential for high-throughput material screening with comprehensive kinetics information at the nanoscale.

7.
Analyst ; 149(9): 2629-2636, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563459

RESUMEN

Cell migration is known to be a fundamental biological process, playing an essential role in development, homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell contours in each image and track the dynamic behaviors of migrating cells in the field of view. Cells are firstly located and identified via the CA module-based cell detection network, and then associated and tracked via a cell tracking algorithm employing a hybrid feature-matching strategy. This proposed HFM-Tracker exhibits superiorities in cell detection and tracking, achieving 75% in MOTA (Multiple Object Tracking Accuracy) and 65% in IDF1 (ID F1 score). It provides quantitative analysis of the cell morphology and migration features, which could further help in understanding the complicated and diverse cell migration processes.


Asunto(s)
Algoritmos , Movimiento Celular , Rastreo Celular , Rastreo Celular/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
8.
Angew Chem Int Ed Engl ; 63(17): e202316551, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38411372

RESUMEN

Single-entity electrochemistry is a powerful tool that enables the study of electrochemical processes at interfaces and provides insights into the intrinsic chemical and structural heterogeneities of individual entities. Signal processing is a critical aspect of single-entity electrochemical measurements and can be used for data recognition, classification, and interpretation. In this review, we summarize the recent five-year advances in signal processing techniques for single-entity electrochemistry and highlight their importance in obtaining high-quality data and extracting effective features from electrochemical signals, which are generally applicable in single-entity electrochemistry. Moreover, we shed light on electrochemical noise analysis to obtain single-molecule frequency fingerprint spectra that can provide rich information about the ion networks at the interface. By incorporating advanced data analysis tools and artificial intelligence algorithms, single-entity electrochemical measurements would revolutionize the field of single-entity analysis, leading to new fundamental discoveries.

9.
ACS Meas Sci Au ; 4(1): 76-80, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38404487

RESUMEN

Reactions involving sulfhydryl groups play a critical role in maintaining the structure and function of proteins. However, traditional mechanistic studies have mainly focused on reaction rates and the efficiency in bulk solutions. Herein, we have designed a cysteine-mutated nanopore as a biological protein nanoreactor for electrochemical visualization of the thiol substitute reaction. Statistical analysis of characteristic current signals shows that the apparent reaction rate at the single-molecule level in this confined nanoreactor reached 1400 times higher than that observed in bulk solution. This substantial acceleration of thiol substitution reactions within the nanopore offers promising opportunities for advancing the design and optimization of micro/nanoreactors. Moreover, our results could shed light on the understanding of sulfhydryl reactions and the thiol-involved signal transduction mechanisms in biological systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA