Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 280: 116476, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38820822

RESUMEN

Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.


Asunto(s)
Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Metales Pesados/toxicidad , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , China , Suelo/química , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , ARN Ribosómico 16S , Instalaciones de Eliminación de Residuos , Monitoreo del Ambiente , Proteobacteria , Actinobacteria/genética , Microbiota/efectos de los fármacos , Chloroflexi/efectos de los fármacos , Chloroflexi/genética
2.
Sci Total Environ ; 770: 145361, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736386

RESUMEN

In this study, to clarify the interaction between dissolved heavy metals and the coexisting chemical factors in karst wetland waters, surface water samples were collected from the Caohai Wetland during a water year, and the hydrochemistry and heavy metal pollution characteristics of the samples were analyzed. The main influencing factors of heavy metals in different water periods were identified through a cooccurrence network analysis. To further analyze the influence mechanism of these main influencing factors, the forms of heavy metals in the water were simulated with PHREEQC software, and the effects of these main influencing factors on the forms were analyzed by redundancy analysis. The results show that Ca2+ was the main cation in the wetland water, while the main anion was HCO3-. The hydrochemical facies of the Caohai Wetland in the wet and dry seasons were Ca-Mg-SO4-HCO3 and Ca-HCO3, respectively. Cd was the main pollutant in the Caohai Wetland, with Cd levels seriously exceeding the standards. The characteristics of the karst water in the Caohai Wetland are apparent. The cooccurrence network analysis shows that pH, dissolved oxygen (DO), electrical conductivity (EC), SO42- and HCO3- are the main factors regulating heavy metals. The results of morphological simulation and analysis were used to explore the mechanism of action of these factors. These data provide geochemical information useful for water quality assessment and management plans on heavy metal pollution.

3.
Ecotoxicol Environ Saf ; 211: 111936, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33482494

RESUMEN

This study aimed to investigate the response of sediment microbial communities (including bacteria and archaeal groups) in Caohai Lake to anthropogenic activities. The sediment samples were collected from the regions with high anthropogenic interference and low anthropogenic interference. Their physicochemical properties and enzyme activities were analyzed, and the bacterial and archaeal communities were investigated using high-throughput sequencing technology. The results showed that the physicochemical characters changed by anthropogenic activities were the important factors that influenced enzyme activities, alpha diversity, key functional taxa, and community structure. And the impact of anthropogenic activities on microbial communities might follow a non-linear pattern. Furthermore, few significant differences of alpha indices between the high and low disturbed areas, but clear differences of microbial community composition analysis and beta-diversity analysis were observed. The hypothesis was proved that the intensity of anthropogenic impacts in Caohai had not reached the potential thresholds. The best distinguish biomarkers between the two areas and the most related key nodes among the network did not always have a high microbial abundance. The anthropogenic activities might influence the microbial community by affecting a small number of the key taxon in the ecological network. These findings provided a valuable understanding of how sediment microorganisms respond to anthropogenic activities in Caohai Lake.


Asunto(s)
Sedimentos Geológicos/química , Microbiota , Humedales , Archaea , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Lagos/microbiología , ARN Ribosómico 16S
4.
Chemosphere ; 271: 129549, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33445019

RESUMEN

The migration of sediment phosphorus (P) could be affected by the existence of aquatic plants. To explore the effects of aquatic plants on the P sorption-desorption behaviors in the sediments, sediment in Caohai wetland was collected and cultured with the submerged plant (Hydrilla verticillata) and emerged plant (Scripus triqueter). Then the sorption and desorption experiments were performed, and physicochemical properties, P fractions, and dissolved organic matter (DOM) characteristics were evaluated. Results showed that the treated sediments exhibited similar P sorption kinetic process fitted well with the two-compartment first-order model. Nevertheless, H. verticillata cultured sediment could be well described by the modified Langmuir isotherm model, while S. triqueter cultured sediment fitted the modified Freundlich equations well. The obvious changing P fractions in cultured sediments were BD-P and NaOH-SRP during sorption. H. verticillata and S. triqueter displayed different sorption-desorption behaviors by altering BD-P, humification index, fluorescence intensity, and PARAFAC component contents in sediments. Compared to raw sediment, H. verticillata presented higher P sorption and lower P release from sediments by decreasing BD-P and increasing DOM (fulvic acid-like and humic-like components) content, while S. triqueter showed adverse P sorption and release effects by reducing DOM components. The growth of submerged plants was suggested to make a positive influence on the high efficiency of P retention capacity and low release risk.


Asunto(s)
Hydrocharitaceae , Fósforo , Adsorción , Sedimentos Geológicos
5.
Environ Pollut ; 267: 115454, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32911334

RESUMEN

In recent years, with the expansion of the Weining county in the northeast of Caohai wetland, the construction of a new port in the north, and the large-scale development of cultivated land in the east, land use patterns in lakeshore areas have changed. These changes have affected the state of lake shores water bodies in complex ways, resulting in varying degrees of local water pollution. To explore the distribution and transformation characteristics of water chemistry and heavy metals in different areas of a water body under the influence of different land uses, especially the interactions between water chemical factors and heavy metals in different areas of a water body, this study used Circos diagrams, originally used in biological genetic analysis, to visualize these interactions. This is the first time that the Circos diagram has been applied to the analysis of environmental interactions. The results showed that there are significant differences in the distribution of water chemical factors and heavy metals in different areas of the Caohai wetland. In particular, Cd is affected by anthropogenic sources. The Cd content is higher in the NCL and UL areas, which are at greater risk from pollution. The factors controlling heavy metal levels in water bodies were different in the different regions. The NCL region was mainly affected by construction excavation ore, UL was mainly affected by man-made industrial inputs, CL was mainly affected by pesticide and fertilizer inputs, and ML and FL were mainly affected by Eh and DO. The PCA results showed that the sources of heavy metals in different types of water bodies in the lakeshore zone were both natural and anthropogenic. Therefore, controlling pollutants, reducing environmental pollution inputs to the lakeshore zone, and strengthening supervision and management near wetlands may be of great significance for handling heavy metal pollution.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Agua , Contaminantes Químicos del Agua/análisis , Humedales
6.
Sci Total Environ ; 748: 141425, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798878

RESUMEN

Microbial fuel cells (MFCs) that are bio-energy transducers capture bioelectricity produced from the oxidation of organic matter by using the electro-active bacteria grown on the biofilm attached on anode. Previous studies explored the effect of several limiting factors, such as electrode material, catalyst type, membrane structure, and electrolyte, on the electrochemical performance of MFCs. However, the effects of electrode position on Cr(VI) reduction and bioelectricity production remain unknown. In this study, MFCs with different electrode positions (i.e., 4 cm (MFC-4), 3 cm (MFC-3), 2 cm (MFC-2), and 1 cm (MFC-1)) were designed and fabricated to evaluate the overall performance of MFCs. The results of electrochemical analysis confirmed that MFC-2 exhibited low exchange transfer resistance (4.9 Ω) and strong conductivity, resulting in optimal electrochemical performance. In addition, Cr(VI) was completely removed within 11 h in MFC-2 with a large reduction rate of 0.91 g/m3·h. and COD removal efficiency of 78.25%. The overall performance of MFC-2 was comparatively higher than those of MFC-1 (0.80 g/m3·h and 68.82%), MFC-3 (0.64 g/m3·h and 61.67%), and MFC-4 (0.52 g/m3·h and 39.85%). Meanwhile, MFC-2 generated high open voltage (1.02 V) and power density (535.4 mW/m2), which are 1.4- and 3.1-fold larger than those of MFC-4 (0.72 V and 171.3 mW/m2). High COD removal and power density indicated the strong electrochemical activity of electroactive bacteria in the anode chamber of the MFCs, which was due to the low resistance in the MFCs could accelerate electron transfer and boost electrochemical reaction. Consequently, the optimal electrode spacing in MFCs was 2 cm. Further studies confirmed that Cr(VI) was removed and deposited in the form of Cr(III) on the electrode surface. High-throughput analysis suggested Pseudomonas species are the key electroactive bacteria for electricity generation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Cromo , Electricidad , Electrodos
7.
World J Microbiol Biotechnol ; 35(10): 153, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576426

RESUMEN

Karst caves, considering to be the "arks" of biodiversity, often contain high levels of endemism. In the present study, the actinobacterial community in Shuanghe Cave, the longest cave in Asia, was analyzed for the first-time using culture-dependent and -independent (16S rRNA amplicon sequencing) approaches. The amplicon sequencing analysis revealed a broad taxonomic diversity in Shuanghe Cave, including 19 phyla (predominantly Actinobacteria) and 264 different genera. While the culture-dependent method got the unrepresentative but supplemental result, a total of 239 actinomycetes were isolated and were identified to seven genera based on culture features and 16S rRNA tests. Among the three habitats (soil, rock soil, and bat guano), the dominant phyla did not differ significantly, while the dominant genus community varied among different habitats, and the richness in soil and rock soil samples was higher than that in bat guano. Furthermore, 16 isolate strains showed antimicrobial activity, especially, the strain S142 (Streptomyces badius) and S761 (Actinoplanes friuliensis) exhibited the most promising activity against various pathogens. Overall, this work showed the abundant bacterial diversity and the antimicrobial potential of the isolates from the Shuanghe Cave.


Asunto(s)
Actinobacteria/aislamiento & purificación , Cuevas/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Animales , Asia , Biodiversidad , Quirópteros/microbiología , ADN Bacteriano/genética , Ecosistema , Sedimentos Geológicos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Microbiología del Suelo
8.
Bioresour Technol ; 152: 457-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24321609

RESUMEN

Agaricus bisporus showed best performance in removing Pb(II) with a biosorption capacity of 86.4 mg g(-1) after modification with NaOH. In this work, the removal of Pb(II) from wastewater has been conducted in column mode. The metal removal was dependent on the flow rate, initial metal concentration, and bed height. The experimental data obtained from the biosorption process was successfully correlated with the Bohart-Adams, Thomas, and Yoon-Nelson models. Five biosorption-desorption cycles yielded 95.34%, 92.27%, 90.13%, 86.75%, and 81.52% regeneration, respectively. Pb(II) could be effectively removed from industrial wastewater; some metal ions and organics were also removed concomitantly, and the obtained effluent had characteristics of better quality. The results confirmed that modified A. bisporus could be applied for the removal of heavy metals from industrial wastewater in a continuous column process.


Asunto(s)
Agaricus/metabolismo , Residuos Industriales , Plomo/aislamiento & purificación , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Adsorción/efectos de los fármacos , Agaricus/efectos de los fármacos , Biodegradación Ambiental/efectos de los fármacos , Reología , Hidróxido de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...