Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566974

RESUMEN

The nanoparticles dispersion system has complex migration characteristics and percolation law in porous media due to the interaction between the nanoparticles and porous media. In this paper, lab experiments were carried out to characterize the morphology, particle size distributions, and apparent viscosities of SiO2/P(MBAAm-co-AM) polymeric nanoparticle solution, investigate its migration characteristics in porous media, and probe its capability of enhanced oil recovery (EOR) in the reservoirs. Quartz microtubule, sand pack, and etched glass micromodels were used as the porous media in the flow and flooding experiments. Gray image-processing technology was applied to achieve oil saturation at different flooding stages in the micromodel for calculating the EOR of the SiO2/P(MBAAm-co-AM) polymeric nanoparticle solution. The results show that The SiO2/P(MBAAm-co-AM) polymeric nanoparticles are spherical with diameters ranging from 260 to 300 nm, and the thicknesses of the polymeric layers are in the range of 30-50 nm. As the swelling time increases from 24 to 120 h, the medium sizes of the SiO2/P(MBAAm-co-AM) polymeric nanoparticles increase from 584.45 to 1142.61 nm. The flow of the SiO2/P(MBAAm-co-AM) polymeric nanoparticles has obvious nonlinear characteristics and a prominent scale effect at a low-pressure gradient, and there should be an optimal matching relationship between its injection mass concentration and the channel size. The flow tests in the sand packs demonstrate that the SiO2/P(MBAAm-co-AM) polymeric nanoparticles can form effective plugging in the main flow channels at different permeability areas and can break through at the throat to fulfill the step-by-step profile control. Moreover, the profile control of the SiO2/P(MBAAm-co-AM) polymeric nanoparticles strengthens with an increase in their swelling time. The microscopic flooding experiment in the etched glass micromodel confirms that the SiO2/P(MBAAm-co-AM) polymeric nanoparticles can block dynamically and alternatively the channels of different sizes with the form of loose or dense networks to adjust the fluid flow diversion, improve the sweep efficiency, and recover more residual oil. The SiO2/P(MBAAm-co-AM) polymeric nanoparticles can achieve an enhanced oil recovery of 20.71% in the micromodel.

2.
ACS Omega ; 6(28): 18200-18214, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308051

RESUMEN

Mechanical properties are some of the most important parameters for understanding well drilling and hydraulic fracturing designs in unconventional reservoir development. As an effective tool, nanoindentation has been used to determine the mechanical properties of rocks at the nanoscale. In this study, the Longmaxi Formation shale samples from the Yibin area of China were collected and analyzed to obtain the multiphase mechanical properties. The mineral compositions and organic geochemistry of the shale samples were studied using X-ray diffraction, energy-dispersive X-ray spectrometry, and a carbon/sulfur analyzer. The pore structures of the shale samples at the micro- and nanoscales were characterized by field-emission scanning electron microscopy. The mechanical parameters of the shale samples, such as the hardness and elastic modulus, were investigated using the nanoindentation method to identify three mineral phases: brittle minerals, soft matters, and complex minerals at the interfaces between brittle minerals and soft matters. The uncertainty characteristics of the mechanical parameters of the three mineral phases were evaluated using the Weibull model, and the factors interfering with the mechanical parameters were analyzed for the different shale samples. The results showed that the brittle minerals had the largest recovered elastic deformations and the smallest residual deformations, while the soft matters had the largest residual deformations and the smallest recovered elastic deformations. The analysis results of the coefficients of variation and the Weibull modulus both confirmed that the scatter of the hardness was higher than that of the elastic modulus because of the uncertain contact area, and the hardness and elastic modulus of the soft matters had the highest uncertainty among the three mineral phases. The elastic modulus increased nonlinearly with increasing hardness according to a power function for the whole shale sample. The elastic modulus and hardness both had a favorable linear relationship with the total organic carbon (TOC) content, illustrating that the TOC content was one of the significant factors that affected the mechanical parameters of the shale samples.

3.
Nanomaterials (Basel) ; 9(4)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979030

RESUMEN

Polymeric nanoparticle suspension is a newly developed oil-displacing agent for enhanced oil recovery (EOR) in low-permeability reservoirs. In this work, SiO2/P(MBAAm-co-AM) polymeric nanoparticles were successfully synthesized by a simple distillation-precipitation polymerization method. Due to the introduction of polymer, the SiO2/P(MBAAm-co-AM) nanoparticles show a favorable swelling performance in aqueous solution, and their particle sizes increase from 631 to 1258 nm as the swelling times increase from 24 to 120 h. The apparent viscosity of SiO2/P(MBAAm-co-AM) suspension increases with an increase of mass concentration and swelling time, whereas it decreases as the salinity and temperature increase. The SiO2/P(MBAAm-co-AM) suspension behaves like a non-Newtonian fluid at lower shear rates, yet like a Newtonian fluid at shear rates greater than 300 s-1. The EOR tests of the SiO2/P(MBAAm-co-AM) suspension in heterogeneous, low-permeability cores show that SiO2/P(MBAAm-co-AM) nanoparticles can effectively improve the sweep efficiency and recover more residual oils. A high permeability ratio can result in a high incremental oil recovery in parallel cores. With an increase of the permeability ratio of parallel cores from 1.40 to 15.49, the ratios of incremental oil recoveries (low permeability/high permeability) change from 7.69/4.61 to 23.61/8.46. This work demonstrates that this SiO2/P(MBAAm-co-AM) suspension is an excellent conformance control agent for EOR in heterogeneous, low-permeability reservoirs. The findings of this study can help to further the understanding of the mechanisms of EOR using SiO2/P(MBAAm-co-AM) suspension in heterogeneous, low-permeability reservoirs.

4.
Materials (Basel) ; 12(3)2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736281

RESUMEN

In this work, the role of long period stacking ordered (LPSO) phase in the crack propagation behavior of an as-cast Mg95.5Y3Zn1.5 alloy was investigated by dynamic four-point bent tests. The as-cast Mg95.5Y3Zn1.5 alloy is mainly composed of Mg matrix, 18R LPSO phase located at the grain boundaries and 14H LPSO phase located within the Mg matrix. The alloy exhibits excellent dynamic mechanical properties; the yield stress, maximum stress and strain to failure are 190.51 ± 3.52 MPa, 378.32 ± 4.26 MPa and 0.168 ± 0.006, respectively, at the strain rate of ~3000 s-1. The LPSO phase effectively hinders dynamic crack propagation in four typical ways, including crack tip blunting, crack opening inhibition, crack deflection and crack bridging, which are beneficial to the mechanical properties of the alloy under dynamic loadings.

5.
Materials (Basel) ; 12(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888145

RESUMEN

Flexible and stretchable conductive materials have received significant attention due to their numerous potential applications in flexible printed electronics. In this paper, we describe a new type of conductive filler for flexible electrodes-silver nanonets prepared through the "dissolution-recrystallization" solvothermal route from porous silver nanoflakes. These new silver fillers show characteristics of both nanoflakes and nanoparticles with propensity to form interpenetrating polymer-silver networks. This effectively minimizes trade-off between composite electrode conductivity and stretchability and enables fabrication of the flexible electrodes simultaneously exhibiting high conductivity and mechanical durability. For example, an electrode with uniform, networked silver structure from the flakiest silver particles showed the lowest increase of resistivity upon extension (3500%), compared to that of the electrode filled with less flaky (3D) particles (>50,000%).

6.
Saudi J Biol Sci ; 24(2): 263-267, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28149161

RESUMEN

In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can't sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA