Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(5): 123, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573432

RESUMEN

CONTEXT: To gain a deeper understanding of zinc-doped boron clusters, theoretical calculations were performed to investigate the size effects and electronic properties of zinc-doped boron clusters. The study of the electronic properties, spectral characteristics, and geometric structures of Zn B n (n = 1-15) is of great significance in the fields of semiconductor materials science, material detection, and improving catalytic efficiency. The results indicate that Zn B n (n = 1-15) clusters predominantly exhibit planar or quasi-planar structures, with the Zn atom positioned in the outer regions of the B n framework. The second stable structure of Zn B 3 is a three-dimensional configuration, indicating that the structures of zinc-doped boron clusters begin to convert from the planar or quasi-planar structures to the 3D configurations. The second low-energy structure of Zn B 15 is a novel configuration. Relative stability analyses show that the Zn B 12 has better chemical stability than other clusters with a HOMO-LUMO gap of 2.79 eV. Electric charge analysis shows that part electrons on zinc atoms are transferred to boron atoms, and electrons prefer to cluster near the B n framework. According to the electron localization function, it gets harder to localize electrons as the equivalent face value drops, and it's challenging to see covalent bond formation between zinc and boron atoms. The spectrograms of Zn B n (n = 1-15) exhibit distinct properties and notable spectral features, which can be used as a theoretical basis for the identification and confirmation of boron clusters doped with single-atom transition metals. METHODS: The calculations were performed using the ABCluster global search technique combined with density functional theory (DFT) methods. The selected low-energy structures were subjected to geometric optimization and frequency calculations at the PBE0/6-311 + G(d) level to ensure structural stability and eliminate any imaginary frequencies. To acquire more precise relative energies, we performed single-point energies calculations for the low-lying isomers of Zn B n (n = 1-15) at the CCSD(T)/6-311 + G(d)//PBE0/6-311 + G(d) level of theory. All calculations were performed using Gaussian 09 software. To facilitate analysis, we utilized software tools such as Multiwfn, and VMD.

2.
Molecules ; 28(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36615549

RESUMEN

A theoretical research of structural evolution, electronic properties, and photoelectron spectra of selenium-doped boron clusters SeBn0/- (n = 3-16) is performed using particle swarm optimization (CALYPSO) software in combination with density functional theory calculations. The lowest energy structures of SeBn0/- (n = 3-16) clusters tend to form quasi-planar or planar structures. Some selenium-doped boron clusters keep a skeleton of the corresponding pure boron clusters; however, the addition of a Se atom modified and improved some of the pure boron cluster structures. In particular, the Se atoms of SeB7-, SeB8-, SeB10-, and SeB12- are connected to the pure quasi-planar B7-, B8-, B10-, and B12- clusters, which leads to planar SeB7-, SeB8-, SeB10-, and SeB12-, respectively. Interestingly, the lowest energy structure of SeB9- is a three-dimensional mushroom-shaped structure, and the SeB9- cluster displays the largest HOMO-LUMO gap of 5.08 eV, which shows the superior chemical stability. Adaptive natural density partitioning (AdNDP) bonding analysis reveals that SeB8 is doubly aromatic, with 6 delocalized π electrons and 6 delocalized σ electrons, whereas SeB9- is doubly antiaromatic, with 4 delocalized π electrons and 12 delocalized σ electrons. Similarly, quasi-planar SeB12 is doubly aromatic, with 6 delocalized π electrons and 14 delocalized σ electrons. The electron localization function (ELF) analysis shows that SeBn0/- (n = 3-16) clusters have different local electron delocalization and whole electron delocalization effects. The simulated photoelectron spectra of SeBn- (n = 3-16) have different characteristic bands that can identify and confirm SeBn- (n = 3-16) combined with future experimental photoelectron spectra. Our research enriches the geometrical structures of small doped boron clusters and can offer insight for boron-based nanomaterials.

3.
ACS Omega ; 7(45): 41266-41274, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406576

RESUMEN

Here, the ground-state structures, electronic structures, polarizability, and spectral properties of metal-free phthalocyanine (H2Pc) under different external electric fields (EEFs) are investigated. The results show that EEF has an ultrastrong regulation effect on various aspects of H2Pc; the geometric structures, electronic properties, polarizability, and spectral properties are strongly sensitive to the EEF. In particular, an EEF of 0.025 a.u. is an important control point: an EEF of 0.025 a.u. will bend the benzene ring subunits to the positive and negative x directions of the planar molecule. Flipping the EEF from positive (0.025 a.u.) to negative (-0.025 a.u.) flips also the bending direction of benzene ring subunits. The H2Pc shows different dipole moments projecting an opposite direction along the x direction (-84 and 84 Debye for EEFs of -0.025 and 0.025 a.u., respectively) under negative and positive EEF, revealing a significant dipole moment transformation. Furthermore, when the EEF is removed, the molecule can be restored to the planar structure. The transformation of the H2Pc structure can be induced by the EEF, which has potential applications in the molecular devices such as molecular switches or molecular forceps. EEF lowers total energy and reduces highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap; especially, an EEF of 0.025 a.u. can reduce the HOMO-LUMO gap from 2.1 eV (in the absence of EEF) to 0.37 eV, and thus, it can enhance the molecular conductivity. The first hyperpolarizability of H2Pc is 0 in the absence of EEF; remarkably, an EEF of 0.025 a.u. can enhance the first hyperpolarizability up to 15,578 a.u. Therefore, H2Pc under the EEF could be introduced as a promising innovative nonlinear optical (NLO) nanomaterial such as NLO switches. The strong EEF (0.025 a.u.) causes a large number of new absorption peaks in IR and Raman spectra and causes the redshift of electronic absorption spectra. The changes of EEF can be used to regulate the structure transformation and properties of H2Pc, which can promote the application of H2Pc in nanometer fields such as molecular devices.

4.
RSC Adv ; 12(26): 16706-16716, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35754907

RESUMEN

A theoretical study of geometrical structures, electronic properties, and spectral properties of single-atom transition metal-doped boron clusters MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) is performed using the CALYPSO approach for the global minimum search, followed by density functional theory calculations. The global minima obtained for the MB24 - (M = Sc, Ti, V, and Cr) clusters correspond to cage structures, and the MB24 - (M = Mn, Fe, and Co) clusters have similar distorted four-ring tubes with six boron atoms each. Interestingly, the global minima obtained for the NiB24 - cluster tend to a quasi-planar structure. Charge population analyses and valence electron density analyses reveal that almost one electron on the transition-metal atoms transfers to the boron atoms. The electron localization function (ELF) of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) indicates that the local delocalization of MB24 - (M = Sc, Ti, V, Cr, and Ni) is weaker than that of MB24 - (M = Mn, Fe, and Co), and there is no obvious covalent bond between doped metal and B atoms. The spin density and spin population analyses reveal that open-shell MB24 - (M = Ti, Cr, Fe, and Ni) has different spin characteristics which are expected to lead to interesting magnetic properties and potential applications in molecular devices. The polarizability of MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) shows that MB24 - (M = Mn, Fe, and Co) has larger first hyperpolarizability, indicating that MB24 - (M = Mn, Fe, and Co) has a strong nonlinear optical response. Hence, MB24 - (M = Mn, Fe, and Co) might be considered as a promising nonlinear optical boron-based nanomaterial. The calculated spectra indicate that MB24 - (M = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) has different and meaningful characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these single-atom transition metal-doped boron clusters. Our work enriches the database of geometrical structures of doped boron clusters and can provide an insight into new doped boron clusters.

5.
ACS Omega ; 6(45): 30442-30450, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34805674

RESUMEN

A theoretical study of geometrical structures, electronic properties, and spectral properties of single-atom transition metal-doped boron clusters MB24 (M = Sc, V, and Mn) is performed using the CALYPSO approach for the global minimum search, followed by density functional theory calculations. The global minima obtained for the VB24 and MnB24 clusters correspond to cage structures. Interestingly, the global minima obtained for the ScB24 cluster tend to a three-ring tubular structure. Population analyses and valence electron density analyses reveal that partial electrons on transition-metal atoms transfer to boron atoms. The localized orbital locator of MB24 (M = Sc, V, and Mn) indicates that the electron delocalization of ScB24 is stronger than that of VB24 and MnB24, and there is no obvious covalent bond between doped metals and B atoms. The spin density and spin population analyses reveal that MB24 (M = Sc, V, and Mn) have different spin characteristics which are expected to lead to interesting magnetic properties and potential applications in molecular devices. The calculated spectra indicate that MB24 (M = Sc, V, and Mn) has meaningful characteristic peaks that can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of these single-atom transition metal-doped boron clusters. Our work enriches the database of geometrical structures of doped boron clusters and can provide an insight into new doped boron clusters.

6.
Sci Rep ; 11(1): 21138, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707189

RESUMEN

We investigate the parameter estimation problems of two-atom system driven by the phase noise lasers (PNLs) environment. And we give a general method of numeric solution to handle the problems of atom system under the PNLs environment. The calculation results of this method on Quantum Fisher Information (QFI) are consistent with our former results. Moreover, we consider the dipole-dipole (d-d) interaction between the atoms under PNLs environment with the collective decay, and the results show that larger d-d interaction and smaller collective decay rate lead to larger QFI of the two-atom system. So the collective decay will destroy the QFI while the d-d interaction will preserve the QFI, these results can be used to protect the QFI of two-atom system driven by the PNLs environment.

7.
ACS Omega ; 5(32): 20525-20534, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32832805

RESUMEN

Structures and electronic properties of alkali metal atom-doped boron clusters MB12 0/- (M = Li, Na, K) are determined using the CALYPSO method for the global minimum search followed by density functional theory. It is found that the global minima obtained for the neutral clusters correspond to the half-sandwich structure and those of the monoanionic clusters correspond to the boat-shaped structure. The neutral MB12 (M = Li, Na, K) can be considered as a member of the half-sandwich doped B12 clusters, and the geometrical pattern of anion MB12 - (M = Li, Na, K) is a new structure that is different from other doped B12 clusters. Natural population and chemical bonding analyses reveal that the alkali metal atom-doped boron clusters MB12 - are characterized as charge transfer complexes, M+B12 2-, resulting in symmetrically distributed chemical bonds and electrostatic interactions between cationic M+ and boron atoms. The calculated spectra indicate that MB12 0/- (M = Li, Na, K) has meaningful spectral features that can be compared with future experimental data. Our work enriches the varieties of geometrical structures of doped boron clusters and can provide much insight into boron nanomaterials.

8.
Phys Chem Chem Phys ; 20(11): 7701-7709, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29498386

RESUMEN

Elucidating atmospheric oxidation mechanisms and the reaction kinetics of atmospheric compounds is of great importance and necessary for atmospheric modeling and the understanding of the formation of atmospheric organic aerosols. While the hydrolysis of aldehydes has been detected in the presence of sulfuric acid, the reaction mechanism and kinetics remain unclear. Herein, we use electronic structure methods with CCSD(T)/CBS accuracy and canonical variational transition state theory combined with small-curvature tunneling to study the reaction mechanism and kinetics of the hydrolysis of CH3CHO. The calculated results show that the hydrolysis of CH3CHO needs to overcome an energy barrier of 37.21 kcal mol-1, while the energy barrier is decreased to -9.79 kcal mol-1 with a sulfuric acid catalyst. In addition, the calculated kinetic results show that the H2SO4H2O + CH3CHO reaction is faster than H2SO4 + CH3CHOH2O. Additionally, the H2SO4H2O + CH3CHO reaction can play an important role in the sink of CH3CHO below 260 K occurring during the night period when OH, H2SO4, and H2O concentrations are 104, 108, and 1017 molecules cm-3, respectively, because it can compete well with the CH3CHO + OH reaction. There are wide implications in atmospheric chemistry from these findings because of the potential importance of the catalytic effect of H2SO4 on the hydrolysis of CH3CHO in the atmosphere and in the formation of secondary organic aerosols.

9.
Sci Rep ; 7(1): 6160, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733578

RESUMEN

In this paper we propose a scheme by using weak-measurement-based pre- and post-flips (WMPPF) to protect the average quantum Fisher information (QFI) in the independent amplitude-damping channel (ADC) for N-qubit GHZ state and generalized N-qubit GHZ states. We also discuss the weak measurement and quantum measurement reversal (WMQMR) with the same ADC. Based on the analytical and numerical results we obtain the main result: the WMPPF can reduce the effect of dissipation on the average QFI of the phase or the frequency for GHZ state and some generalized GHZ states, and the WMQMR can reduce the effect of dissipation on the average fidelity for GHZ state and generalized GHZ states in ADC. Comparing QFI with fidelity for WMPPF or for WMQMR, a scheme protecting the average fidelity does not necessarily protect the average QFI, even with the same parameters, and vice versa. We also focus on the average QFI versus N in the phase estimation and the frequency estimation of WMPPF, both of which show the advantages over the do-nothing (DN) case. From the investigation of the QFI of weight factor, we find that increasing qubit number can protect it both for WMPPF and for DN.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2122-5, 2014 Aug.
Artículo en Chino | MEDLINE | ID: mdl-25474947

RESUMEN

Through computation, this paper obtained Aflatoxin B1 and its trans-isomer molecules stable structure which was rarely reported by the density functional theory(DFT) with B3LYP complex function and 6-311 + g(d, p) basis set. Through a single point calculations and geometry analysis, we know that the cis-structure is more stable than trans-structure. On the basis of this, Raman spectra of two molecules are calculated by the same method and basis set. compared with the Aflatoxin B1 cis-structure powder experimental Raman spectra, it was informed that numerical results with experimental results combined with a better. While 1582, 3065, 1626 means to take the strongest of the three peaks of cis-structure raman characteristics, 1616, 3065, 1659 cm(-1) is indicated for the strongest of the three peaks of trans-structure raman characteristics. Use the Hirshfeld atom division method combined with Multiwfn software to analyze the composition of frontier orbital based on optimization calculation, and it was informed that the electrophilic ability of two monlecules was stronger than the nucleophilic ability. The proportion of C1 atoms in LUMO orbital are respectively 21.48 percent, 20.62 percent by calculating, thus it is predicted that C1 atom is most main position spot depriving of the electronic in DNA to cause cancer. The above-mentioned research has certain theoretical directive significance in detection, transformation and toxicity inhibition of the cis-trans isomers.


Asunto(s)
Aflatoxina B1/química , Espectrometría Raman , Isomerismo
11.
J Mol Model ; 20(9): 2435, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25204584

RESUMEN

Due to their lack of effect on the ozone depletion, hydrofluoroethers are considered as potential candidates for third generation refrigerants. In the present work, the mechanisms and kinetics of reaction of the Cl atom with CF(3)CHFOCH(3) and CHF(2)CHFOCF(3) were investigated theoretically using quantum chemical methods and transition state theory. Four reaction pathways for the title reaction were explored. By using conventional transition state theory with Eckart tunneling correction, the rate constants of the title reaction were obtained over the temperature range 200-300 K. Kinetic calculations demonstrate that H-abstraction from the -CH(3) group in CF(3)CHFOCH(3) and H-abstraction from the -CHF2 group in CHF(2)CHFOCF(3) are major reaction pathways, with the barrier heights of the two paths calculated to be -1.04 and 4.33 kcal mol(-1), respectively. However, the contribution of H-abstraction from the -CHFO- group for the two reactions should also be taken into account with increased temperature. At 298 K, the calculated overall rate constants of the reaction of CHF(2)CHFOCF(3) with the Cl atom are 4.27 × 10(-15) cm(3) molecule(-1) s(-1), which is consistent with the experimental value of (1.2 ± 2.0) × 10(-15) cm(3) molecule(-1) s(-1).

12.
J Phys Chem A ; 117(24): 5106-16, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23701044

RESUMEN

The gas-phase reactions of sulfuric acid catalyzed hydrolysis of formaldehyde and formaldehyde with sulfuric acid and H2SO4···H2O complex are investigated employing the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST) with Eckart tunneling correction. The calculated results show that the energy barrier of hydrolysis of formaldehyde in gas phase is lowered to 6.09 kcal/mol from 38.04 kcal/mol, when the sulfuric acid is acted as a catalyst at the CCSD(T)/aug-cc-pv(T+d)z//M06-2X/6-311++G(3df,3pd) level of theory. Furthermore, the rate constant of the sulfuric acid catalyzed hydrolysis of formaldehyde combined with the concentrations of the species in the atmosphere demonstrates that the gas-phase hydrolysis of formaldehyde of sulfuric acid catalyst is feasible and could be of great importance for the sink of formaldehyde, which is in previously forbidden hydrolysis reaction. However, it is shown that the gas-phase reactions of formaldehyde with sulfuric acid and H2SO4···H2O complex lead to the formation of H2C(OH)OSO3H, which is of minor importance in the atmosphere.

13.
Chemphyschem ; 13(1): 323-9, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22095771

RESUMEN

The formic acid catalyzed gas-phase reaction between H(2)O and SO(3) and its reverse reaction are respectively investigated by means of quantum chemical calculations at the CCSD(T)//B3LYP/cc-pv(T+d)z and CCSD(T)//MP2/aug-cc-pv(T+d)z levels of theory. Remarkably, the activation energy relative to the reactants for the reaction of H(2)O with SO(3) is lowered through formic acid catalysis from 15.97 kcal mol(-1) to -15.12 and -14.83 kcal mol(-1) for the formed H(2)O⋅⋅⋅SO(3) complex plus HCOOH and the formed H(2)O⋅⋅⋅HCOOH complex plus SO(3), respectively, at the CCSD(T)//MP2/aug-cc-pv(T+d)z level. For the reverse reaction, the energy barrier for decomposition of sulfuric acid is reduced to -3.07 kcal mol(-1) from 35.82 kcal mol(-1) with the aid of formic acid. The results show that formic acid plays a strong catalytic role in facilitating the formation and decomposition of sulfuric acid. The rate constant of the SO(3)+H(2)O reaction with formic acid is 10(5) times greater than that of the corresponding reaction with water dimer. The calculated rate constant for the HCOOH+H(2)SO(4) reaction is about 10(-13) cm(3) molecule(-1) s(-1) in the temperature range 200-280 K. The results of the present investigation show that formic acid plays a crucial role in the cycle between SO(3) and H(2)SO(4) in atmospheric chemistry.

14.
J Phys Chem A ; 115(24): 6559-67, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21598911

RESUMEN

The reactions of H(2)COO with HO(2) and the HO(2)···H(2)O complex are studied by employing the high-level quantum chemical calculations with B3LYP and CCSD(T) theoretical methods, the conventional transition-state theory (CTST), and the Rice-Ramsperger-Kassel-Marcus (RRKM) with Eckart tunneling correction. The calculated results show that the proton transfer plus the addition reaction channel (TS1A) is preferable for the reaction of H(2)COO with HO(2) because the barriers are -10.8 and 1.6 kcal/mol relative to the free reactants and the prereactive complex, respectively, at the CCSD(T)/6-311++G(3df,2p)//B3LYP/6-311++G(d,p) level of theory. Furthermore, the rate constant via TS1A (2.23 × 10(-10) cm(3) molecule(-1) s(-1)) combined with the concentrations of the species in the atmosphere demonstrates that the HO(2) radical would be the dominant sink of H(2)COO in some areas, where the concentration of water is less than 10(17) molecules cm(-3). In addition, although the single water molecule would lower the activated barrier of TS1A from 1.0 to 0.1 kcal/mol with respect to the respective complexes, the rate constant is lower than that of the reaction of HO(2) with H(2)COO.

15.
J Phys Chem A ; 115(8): 1350-7, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21302904

RESUMEN

The reactions of H2SO4 with the OH radical without water and with water are investigated employing the quantum chemical calculations at the B3LYP/6-311+G(2df,2p) and MP2/aug-cc-pv(T+d)z levels of theory, respectively. The calculated results show that the reaction of H2SO4 with OH and H2O is a very complex mechanism because of the formation of the prereactive complex prior to the transition state and product. There are two prereactive complexes with stabilization energies being -20.28 and -20.67 kcal/mol, respectively. In addition, the single water can lower the energy barriers of the hydrogen abstraction and the proton transfer to 7.51 and 6.37 kcal/mol, respectively from 13.79 and 8.82 kcal/mol with respect to the corresponding prereactive complex. The computed rate constants indicate that the water-assisted reaction of sulfuric acid with OH radical is of greater importance than the reaction of the naked sulfuric acid with the OH radical because the rate constant of the water-assisted process is about 10(3) faster than that of the reaction sulfuric acid with OH. Therefore, the conclusion is obtained that the water-assisted process plays an important role in the sink for the gaseous sulfuric acid in the clean area.


Asunto(s)
Gases/química , Radical Hidroxilo/química , Modelos Químicos , Ácidos Sulfúricos/química , Atmósfera/química , Electrones , Hidrógeno/química , Cinética , Protones , Teoría Cuántica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...