Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
NPJ Parkinsons Dis ; 9(1): 24, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774388

RESUMEN

The pathogenesis and clinical heterogeneity of Parkinson's disease (PD) have been evaluated from molecular, pathophysiological, and clinical perspectives. High-throughput proteomic analysis of cerebrospinal fluid (CSF) opened new opportunities for scrutinizing this heterogeneity. To date, this is the most comprehensive CSF-based proteomics profiling study in PD with 569 patients (350 idiopathic patients, 65 GBA + mutation carriers and 154 LRRK2 + mutation carriers), 534 controls, and 4135 proteins analyzed. Combining CSF aptamer-based proteomics with genetics we determined protein quantitative trait loci (pQTLs). Analyses of pQTLs together with summary statistics from the largest PD genome wide association study (GWAS) identified 68 potential causal proteins by Mendelian randomization. The top causal protein, GPNMB, was previously reported to be upregulated in the substantia nigra of PD patients. We also compared the CSF proteomes of patients and controls. Proteome differences between GBA + patients and unaffected GBA + controls suggest degeneration of dopaminergic neurons, altered dopamine metabolism and increased brain inflammation. In the LRRK2 + subcohort we found dysregulated lysosomal degradation, altered alpha-synuclein processing, and neurotransmission. Proteome differences between idiopathic patients and controls suggest increased neuroinflammation, mitochondrial dysfunction/oxidative stress, altered iron metabolism and potential neuroprotection mediated by vasoactive substances. Finally, we used proteomic data to stratify idiopathic patients into "endotypes". The identified endotypes show differences in cognitive and motor disease progression based on previously reported protein-based risk scores.Our findings not only contribute to the identification of new therapeutic targets but also to shape personalized medicine in CNS neurodegeneration.

2.
Nat Commun ; 10(1): 2849, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253762

RESUMEN

Fanconi anemia (FA) is a multigenic disease of bone marrow failure and cancer susceptibility stemming from a failure to remove DNA crosslinks and other chromosomal lesions. Within the FA DNA damage response pathway, DNA-dependent monoubiquitinaton of FANCD2 licenses downstream events, while timely FANCD2 deubiquitination serves to extinguish the response. Here, we show with reconstituted biochemical systems, which we developed, that efficient FANCD2 deubiquitination by the USP1-UAF1 complex is dependent on DNA and DNA binding by UAF1. Surprisingly, we find that the DNA binding activity of the UAF1-associated protein RAD51AP1 can substitute for that of UAF1 in FANCD2 deubiquitination in our biochemical system. We also reveal the importance of DNA binding by UAF1 and RAD51AP1 in FANCD2 deubiquitination in the cellular setting. Our results provide insights into a key step in the FA pathway and help define the multifaceted role of the USP1-UAF1-RAD51AP1 complex in DNA damage tolerance and genome repair.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Proteínas Nucleares/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Regulación de la Expresión Génica/fisiología , Humanos , Mutación , Proteínas Nucleares/genética , Unión Proteica , Proteínas de Unión al ARN , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
3.
Cell Rep ; 26(3): 564-572.e5, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650351

RESUMEN

Fanconi anemia (FA) is characterized by developmental abnormalities, bone marrow failure, and cancer predisposition. FA cells are hypersensitive to DNA replicative stress and accumulate co-transcriptional R-loops. Here, we use the Damage At RNA Transcription assay to reveal colocalization of FANCD2 with R-loops in a highly transcribed genomic locus upon DNA damage. We further demonstrate that highly purified human FANCI-FANCD2 (ID2) complex binds synthetic single-stranded RNA (ssRNA) and R-loop substrates with high affinity, preferring guanine-rich sequences. Importantly, we elucidate that human ID2 binds an R-loop structure via recognition of the displaced ssDNA and ssRNA but not the RNA:DNA hybrids. Finally, a series of RNA and R-loop substrates are found to strongly stimulate ID2 monoubiquitination, with activity corresponding to their binding affinity. In summary, our results support a mechanism whereby the ID2 complex suppresses the formation of pathogenic R-loops by binding ssRNA and ssDNA species, thereby activating the FA pathway.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , ARN/metabolismo , Animales , Pollos , ADN/genética , ADN/metabolismo , Daño del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación , Masculino , Estructuras R-Loop , ARN/genética , Ubiquitinación
4.
Proc Natl Acad Sci U S A ; 116(7): 2561-2570, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30692263

RESUMEN

Fanconi anemia (FA) is a disease of DNA repair characterized by bone marrow failure and a reduced ability to remove DNA interstrand cross-links. Here, we provide evidence that the FA protein FANCI also functions in ribosome biogenesis, the process of making ribosomes that initiates in the nucleolus. We show that FANCI localizes to the nucleolus and is functionally and physically tied to the transcription of pre-ribosomal RNA (pre-rRNA) and to large ribosomal subunit (LSU) pre-rRNA processing independent of FANCD2. While FANCI is known to be monoubiquitinated when activated for DNA repair, we find that it is predominantly in the deubiquitinated state in the nucleolus, requiring the nucleoplasmic deubiquitinase (DUB) USP1 and the nucleolar DUB USP36. Our model suggests a possible dual pathophysiology for FA that includes defects in DNA repair and in ribosome biogenesis.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Ribosomas/metabolismo , Western Blotting , Nucléolo Celular/metabolismo , Reparación del ADN/fisiología , Electroforesis en Gel de Poliacrilamida , Anemia de Fanconi/fisiopatología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutación , Biosíntesis de Proteínas , Precursores del ARN/genética , ARN Ribosómico/genética , Transcripción Genética , Ubiquitinación
5.
J Clin Endocrinol Metab ; 103(7): 2601-2612, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726959

RESUMEN

Context: The hypothalamic melanocortin 4 receptor (MC4R) pathway serves a critical role in regulating body weight. Loss of function (LoF) mutations in the MC4R pathway, including mutations in the pro-opiomelanocortin (POMC), prohormone convertase 1 (PCSK1), leptin receptor (LEPR), or MC4R genes, have been shown to cause early-onset severe obesity. Methods: Through a comprehensive epidemiological analysis of known and predicted LoF variants in the POMC, PCSK1, and LEPR genes, we sought to estimate the number of US individuals with biallelic MC4R pathway LoF variants. Results: We predict ~650 α-melanocyte-stimulating hormone (MSH)/POMC, 8500 PCSK1, and 3600 LEPR homozygous and compound heterozygous individuals in the United States, cumulatively enumerating >12,800 MC4R pathway-deficient obese patients. Few of these variants have been genetically diagnosed to date. These estimates increase when we include a small subset of less rare variants: ß-MSH/POMC,PCSK1 N221D, and a PCSK1 LoF variant (T640A). To further define the MC4R pathway and its potential impact on obesity, we tested associations between body mass index (BMI) and LoF mutation burden in the POMC, PCSK1, and LEPR genes in various populations. We show that the cumulative allele burden in individuals with two or more LoF alleles in one or more genes in the MC4R pathway are predisposed to a higher BMI than noncarriers or heterozygous LoF carriers with a defect in only one gene. Conclusions: Our analysis represents a genetically rationalized study of the hypothalamic MC4R pathway aimed at genetic patient stratification to determine which obese subpopulations should be studied to elucidate MC4R agonist (e.g., setmelanotide) treatment responsiveness.


Asunto(s)
Mutación con Pérdida de Función/genética , Obesidad/epidemiología , Obesidad/genética , Receptor de Melanocortina Tipo 4/genética , Transducción de Señal/genética , Alelos , Fármacos Antiobesidad/farmacología , Índice de Masa Corporal , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Obesidad/tratamiento farmacológico , Proopiomelanocortina/genética , Proproteína Convertasa 1/genética , Receptor de Melanocortina Tipo 4/agonistas , Receptores de Leptina/genética , Estados Unidos/epidemiología , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
6.
DNA Repair (Amst) ; 64: 53-58, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29518739

RESUMEN

Fanconi-associated nuclease 1 (FAN1) removes interstrand DNA crosslinks (ICLs) through its DNA flap endonuclease and exonuclease activities. Crystal structures of human and bacterial FAN1 bound to a DNA flap have been solved. The Pseudomonas aeruginosa bacterial FAN1 and human FAN1 (hFAN1) missing a flexible loop are monomeric, while intact hFAN1 is homo-dimeric in structure. Importantly, the monomeric and dimeric forms of FAN1 exhibit very different DNA binding modes. Here, we interrogate the functional differences between monomeric and dimeric forms of FAN1 and provide an explanation for the discrepancy in oligomeric state between the two hFAN1 structures. Specifically, we show that the flexible loop in question is needed for hFAN1 dimerization. While monomeric and dimeric bacterial or human FAN1 proteins cleave a short 5' flap strand with similar efficiency, optimal cleavage of a long 5' flap strand is contingent upon protein dimerization. Our study therefore furnishes biochemical evidence for a role of hFAN1 homodimerization in biological processes that involve 5' DNA Flap cleavage.


Asunto(s)
Aductos de ADN/metabolismo , División del ADN , Exodesoxirribonucleasas/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/metabolismo , Desoxirribonucleasas/metabolismo , Endodesoxirribonucleasas , Humanos , Enzimas Multifuncionales , Multimerización de Proteína
7.
Cell Rep ; 15(10): 2118-2126, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27239033

RESUMEN

The UAF1-USP1 complex deubiquitinates FANCD2 during execution of the Fanconi anemia DNA damage response pathway. As such, UAF1 depletion results in persistent FANCD2 ubiquitination and DNA damage hypersensitivity. UAF1-deficient cells are also impaired for DNA repair by homologous recombination. Herein, we show that UAF1 binds DNA and forms a dimeric complex with RAD51AP1, an accessory factor of the RAD51 recombinase, and a trimeric complex with RAD51 through RAD51AP1. Two small ubiquitin-like modifier (SUMO)-like domains in UAF1 and a SUMO-interacting motif in RAD51AP1 mediate complex formation. Importantly, UAF1 enhances RAD51-mediated homologous DNA pairing in a manner that is dependent on complex formation with RAD51AP1 but independent of USP1. Mechanistically, RAD51AP1-UAF1 co-operates with RAD51 to assemble the synaptic complex, a critical nucleoprotein intermediate in homologous recombination, and cellular studies reveal the biological significance of the RAD51AP1-UAF1 protein complex. Our findings provide insights into an apparently USP1-independent role of UAF1 in genome maintenance.


Asunto(s)
Emparejamiento Cromosómico , ADN/metabolismo , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Secuencia de Aminoácidos , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos
8.
Nat Commun ; 5: 5726, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25500724

RESUMEN

Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 5' flap DNA substrate, showing that two FAN1 molecules form a head-to-tail dimer to locate the lesion, orient the DNA and unwind a 5' flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1.


Asunto(s)
Reparación del ADN , ADN/química , Exodesoxirribonucleasas/química , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Daño del ADN , Endodesoxirribonucleasas , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Enzimas Multifuncionales , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Blood ; 124(18): 2812-9, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25237197

RESUMEN

Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care.


Asunto(s)
Anemia de Fanconi/patología , Estrés Fisiológico , Animales , Citocinesis , Reparación del ADN , Replicación del ADN , Anemia de Fanconi/genética , Humanos , Estrés Oxidativo
10.
J Biol Chem ; 289(37): 25774-82, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25070891

RESUMEN

Fanconi anemia is a genetic disease resulting in bone marrow failure, birth defects, and cancer that is thought to encompass a defect in maintenance of genomic stability. Mutations in 16 genes (FANCA, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, and Q) have been identified in patients, with the Fanconi anemia subtype J (FA-J) resulting from homozygous mutations in the FANCJ gene. Here, we describe the direct interaction of FANCD2 with FANCJ. We demonstrate the interaction of FANCD2 and FANCJ in vivo and in vitro by immunoprecipitation in crude cell lysates and from fractions after gel filtration and with baculovirally expressed proteins. Mutation of the monoubiquitination site of FANCD2 (K561R) preserves interaction with FANCJ constitutively in a manner that impedes proper chromatin localization of FANCJ. FANCJ is necessary for FANCD2 chromatin loading and focus formation in response to mitomycin C treatment. Our results suggest not only that FANCD2 regulates FANCJ chromatin localization but also that FANCJ is necessary for efficient loading of FANCD2 onto chromatin following DNA damage caused by mitomycin C treatment.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cromatina/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Unión Proteica , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica , Humanos , Mutación
11.
Nucleic Acids Res ; 42(9): 5657-70, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623813

RESUMEN

FANCD2 and FANCI function together in the Fanconi anemia network of deoxyribonucleic acid (DNA) crosslink repair. These proteins form the dimeric ID2 complex that binds DNA and becomes monoubiquitinated upon exposure of cells to DNA crosslinking agents. The monoubiquitinated ID2 complex is thought to facilitate DNA repair via recruitment of specific nucleases, translesion DNA polymerases and the homologous recombination machinery. Using the ubiquitin conjugating enzyme (E2) UBE2T and ubiquitin ligase (E3) FANCL, monoubiquitination of human FANCD2 and FANCI was examined. The ID2 complex is a poor substrate for monoubiquitination, consistent with the published crystal structure showing the solvent inaccessibility of the target lysines. Importantly, FANCD2 monoubiquitination within the ID2 complex is strongly stimulated by duplex or branched DNA, but unstructured single-stranded DNA or chromatinized DNA is ineffective. Interaction of FANCL with the ID2 complex is indispensable for its E3 ligase efficacy. Interestingly, mutations in FANCI that impair its DNA binding activity compromise DNA-stimulated FANCD2 monoubiquitination. Moreover, we demonstrate that in the absence of FANCD2, DNA also stimulates FANCI monoubiquitination, but in a FANCL-independent manner. These results implicate the role of a proper DNA ligand in FANCD2 and FANCI monoubiquitination, and reveal regulatory mechanisms that are dependent on protein-protein and protein-DNA interactions.


Asunto(s)
ADN Viral/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Ubiquitinación , Sustitución de Aminoácidos , Animales , ADN Circular/química , Proteína del Grupo de Complementación L de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación/química , Nucleosomas/química , Plásmidos/química , Unión Proteica , Células Sf9 , Spodoptera , Especificidad por Sustrato
12.
J Biol Chem ; 287(32): 26563-75, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22696213

RESUMEN

Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , ARN Helicasas DEAD-box/genética , ADN Helicasas/genética , Electroforesis en Gel de Campo Pulsado , Citometría de Flujo , Humanos , Mutación , Proteínas de Saccharomyces cerevisiae/genética
13.
DNA Repair (Amst) ; 10(10): 1034-43, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21880555

RESUMEN

The budding yeast Mph1 protein, the putative ortholog of human FANCM, possesses a 3' to 5' DNA helicase activity and is capable of disrupting the D-loop structure to suppress chromosome arm crossovers in mitotic homologous recombination. Similar to FANCM, genetic studies have implicated Mph1 in DNA replication fork repair. Consistent with this genetic finding, we show here that Mph1 is able to mediate replication fork reversal, and to process the Holliday junction via DNA branch migration. Moreover, Mph1 unwinds 3' and 5' DNA Flap structures that bear key features of the D-loop. These biochemical results not only provide validation for a role of Mph1 in the repair of damaged replication forks, but they also offer mechanistic insights as to its ability to efficiently disrupt the D-loop intermediate.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/genética , ADN/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , ARN Helicasas DEAD-box/genética , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , Reparación del ADN/genética , ADN Cruciforme/química , ADN Cruciforme/genética , Recombinación Homóloga , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
15.
Blood ; 117(19): 5078-87, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21355096

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk for cancer and leukemia. Components of the FA-BRCA pathway are thought to function in the repair of DNA interstrand cross-links. Central to this pathway is the monoubiquitylation and chromatin localization of 2 FA proteins, FA complementation group D2 (FANCD2) and FANCI. In the present study, we show that RAD18 binds FANCD2 and is required for efficient monoubiquitylation and chromatin localization of both FANCD2 and FANCI. Human RAD18-knockout cells display increased sensitivity to mitomycin C and a delay in FANCD2 foci formation compared with their wild-type counterparts. In addition, RAD18-knockout cells display a unique lack of FANCD2 and FANCI localization to chromatin in exponentially growing cells. FANCD2 ubiquitylation is normal in cells containing a ubiquitylation-resistant form of proliferating cell nuclear antigen, and chromatin loading of FA core complex proteins appears normal in RAD18-knockout cells. Mutation of the RING domain of RAD18 ablates the interaction with and chromatin loading of FANCD2. These data suggest a key role for the E3 ligase activity of RAD18 in the recruitment of FANCD2 and FANCI to chromatin and the events leading to their ubiquitylation during S phase.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Western Blotting , Línea Celular , Cromatina/metabolismo , Daño del ADN/fisiología , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Humanos , Inmunoprecipitación , ARN Interferente Pequeño , Fase S/fisiología , Transfección , Ubiquitina-Proteína Ligasas , Ubiquitinación
16.
J Biol Chem ; 284(35): 23182-6, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19589784

RESUMEN

FANCI is integral to the Fanconi anemia (FA) pathway of DNA damage repair. Upon the occurrence of DNA damage, FANCI becomes monoubiquitinated on Lys-523 and relocalizes to chromatin, where it functions with monoubiquitinated FANCD2 to facilitate DNA repair. We show that FANCI and its C-terminal fragment possess a DNA binding activity that prefers branched structures. We also demonstrate that FANCI can be ubiquitinated on Lys-523 by the UBE2T-FANCL pair in vitro. These findings should facilitate future efforts directed at elucidating molecular aspects of the FA pathway.


Asunto(s)
ADN/metabolismo , Proteína del Grupo de Complementación L de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Línea Celular , ADN/química , ADN/genética , Reparación del ADN , Proteína del Grupo de Complementación L de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
17.
DNA Repair (Amst) ; 7(2): 253-66, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18036997

RESUMEN

Defects in Brca1 confer susceptibility to breast cancer and genomic instability indicative of aberrant repair of DNA breaks. Brca1 was previously implicated in the homologous recombination pathway via effects on the assembly of recombinase Rad51. Activation-induced cytidine deaminase (AID) deaminates C to U in B lymphocyte immunoglobulin (Ig) DNA to initiate programmed DNA breaks. Subsequent uracil-glycosylase mediated U removal, and perhaps further processing, leads to four known classes of mutation: Ig class switch recombination that results in a region-specific genomic deletion, Ig somatic hypermutation that introduces point mutations in Ig V-regions, Ig gene conversion in vertebrates that possess Ig pseudo-V genes, and translocations common to B cell lymphomas. We tested the involvement of Brca1 in AID-dependent Ig diversification in chicken DT40 cells. The DT40 cell line diversifies IgVlambda mainly by gene conversion, and less so by point mutation. Brca1-deficiency caused a shift in Vlambda diversification, significantly reducing the proportion of gene conversions relative to point mutations. Thus, Brca1 regulates AID-dependent DNA lesion repair. Interestingly, while Brca1 is required to recruit ubiquitinated FancD2 to DNA damage, the phenotype of Brca1-deficient DT40 differs from the one of FancD2-deficient DT40, in which both gene conversion and non-templated mutations are impaired.


Asunto(s)
Linfocitos B/metabolismo , Proteína BRCA1/genética , Citidina Desaminasa/metabolismo , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Conversión Génica/genética , Región Variable de Inmunoglobulina/genética , Animales , Southern Blotting , Western Blotting , Línea Celular , Pollos , Cartilla de ADN/genética , Humanos , Mutación/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
DNA Repair (Amst) ; 6(12): 1764-73, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17681497

RESUMEN

Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.


Asunto(s)
Mutación , N-Glicosil Hidrolasas/metabolismo , Recombinación Genética , Animales , Secuencia de Bases , Cartilla de ADN , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Glicosil Hidrolasas/genética
20.
Curr Opin Immunol ; 18(2): 164-74, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16464563

RESUMEN

Somatic hypermutation and class-switch-recombination are initiated by the deamination of deoxycytosine in DNA by activation-induced-deaminase, AID. Recently, there has been much research into how AID targets double-stranded DNA in sub-regions of Ig genes, the involvement of co-factors and posttranslational modifications in this process, the co-option of DNA 'repair' mechanisms and AID evolution.


Asunto(s)
Citidina Desaminasa/inmunología , Cambio de Clase de Inmunoglobulina , Recombinación Genética , Animales , Citidina Desaminasa/genética , ADN/inmunología , Humanos , Región de Cambio de la Inmunoglobulina/genética , Modelos Inmunológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...