Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(12): e2112248119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302891

RESUMEN

The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems. Adding some concentration of glycerol, which has a cryoprotective effect preventing, to some degree, water crystallization, has been proposed as a possible way out, provided the concentration is small enough for water to retain some of its bulk character and/or for limiting the damage caused by glycerol on living organisms. Contrary to previous expectations, we show that, in the "marginal" glycerol molar concentration ≈ 18%, at which vitrification is possible with no crystallization on rapid cooling, water crystallizes upon isothermal annealing even below the calorimetric glass transition of the solution. Through a time-resolved polarized neutron scattering investigation, we extract key parameters, size and shape of the ice crystallites, fraction of water that crystallizes, and crystallization time, which are important for cryoprotection, as a function of the annealing temperature. We also characterize the nature of the out-of-equilibrium liquid phases that are present at low temperature, providing more arguments against the presence of an isocompositional liquid­liquid transition. Finally, we propose a rule of thumb to estimate the lower temperature limit below which water crystallization does not occur in aqueous solutions.

2.
Sci Rep ; 7(1): 10448, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874711

RESUMEN

Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.


Asunto(s)
Eritrocitos/fisiología , Hemoglobinas/metabolismo , Modelos Biológicos , Oxígeno/metabolismo , Algoritmos , Transporte Biológico , Difusión , Humanos
3.
Langmuir ; 31(30): 8402-10, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26153251

RESUMEN

Cell-free hemoglobin (Hb)-based oxygen carriers have long been proposed as blood substitutes but their clinical use remains tricky due to problems of inefficiency and/or toxicity. Conjugation of Hb with the biocompatible polymer poly(ethylene glycol) (PEG) greatly improved their performance. However, physiological data suggested a polymer molecular weight (Mw) threshold of about 10 kDa, beyond which the grafting of two PEG chains no longer improves efficiency and nontoxicity of diPEG/Hb conjugates. We used small-angle neutron scattering and contrast variation, which are the only techniques able to probe separately the conformation of PEG chains and Hb protein within the complex, to investigate the role of PEG chain conformation in diPEGylated Hb conjugates as a function of the polymer Mw. We found out that the structure of Hb tetramer is not modified by the polymer grafting. Similarly, with a constant grafting of two chains per protein, there is no significant change of the Gaussian conformation between free and grafted PEG below ∼10 kDa, the complex being well described by the "dumbbell" model. However, beyond that threshold, the radius of gyration of grafted PEG is significantly smaller than that of the free polymer, showing a compaction of the PEG chains, either in the "dumbbell" model or in the "shroud" one. In the latter model, the polymer may be wrapped on the surface of the protein spreading a protective "shielding" effect over a larger fraction of the protein. Both proposed models are in good agreement with the physiological data reported in the literature.


Asunto(s)
Hemoglobinas/química , Polietilenglicoles/química , Humanos , Modelos Moleculares , Conformación Molecular , Difracción de Neutrones , Dispersión del Ángulo Pequeño
4.
Soft Matter ; 11(11): 2183-92, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25639345

RESUMEN

The extent and nature of thermal fluctuations in the innovative class of cross-linked polymers called cyclodextrin nanosponges (CDNS) are investigated, on the picosecond time scale, through elastic and quasielastic neutron scattering experiments. Nanosponges are complex 3D polymer networks where covalent bonds connecting different cyclodextrin (CD) units and intra- and inter-molecular hydrogen-bond interactions cooperate to define the molecular architecture and fast dynamics of the polymer. The study presented here aims to clarify the nature of the conformational rearrangements activated by increasing temperature in the nanosponge polymer, and the constraints imposed by intra- and inter-molecular hydrogen-bond patterns on the internal dynamics of the macromolecule. The results suggest a picture, in which conformational rearrangements involving the torsion of the OH groups around the C-O bonds dominate the internal dynamics of the polymer over the picosecond time scale. Moreover, the estimated values of mean square displacements reveal that the motions of the hydrogen atoms in the nanosponges are progressively hampered as the cross-linking degree of the polymer is increased. Finally, the study of the molecular relaxations suggests a dynamical rearrangement of the hydrogen-bond networks, which is characterized by a jump diffusion motion of the more mobile hydrogen atoms belonging to the OH groups of the CD units. All these findings add further contribution to the rational comprehensive view of the dynamics of these macromolecules, which may be particularly beneficial in designing new drug-delivery systems with tuneable inclusion/release properties.

5.
J Phys Chem B ; 118(2): 624-33, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24377328

RESUMEN

The vibrational dynamics of a new class of cross-linked polymers made up of cyclodextrins is here investigated in the microscopic range by the joint use of light and inelastic neutron scattering experiments. The effect of increasing the connectivity of the polymeric network on the vibrational dynamics of the system is studied by exploiting the complementarity of these two different probes. The derived densities of vibrational states of the polymers evidence the presence of the characteristic anomalous excess of vibrational modes with respect to the Debye level, already observed in the low-frequency Raman spectra and referred to as boson peak (BP). The overall analysis of the spectra suggests an emerging picture in which the motions of hydrogen atoms of the polymers are progressively hampered when the cross-linking degree of the covalent network increases. At the same time, the frequency and intensity of the BP are found to significantly change by increasing the cross-linking degree of the polymeric network, as clearly suggested by the existence of a scaling-law for the BP evolution. These findings support the conclusion that the growing of the covalent connectivity of the system induces a general modifications of the elastic properties of these cyclodextrin-based polymers, which are, once again, modulated by the cross-linking agent/cyclodextrin molar ratio.

6.
J Phys Chem B ; 117(39): 11466-72, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24015824

RESUMEN

In this paper, we analyze the internal picosecond dynamics of enantiomeric ((S)-) and racemic ((R,S)-) ibuprofen (IBP), when forming inclusion complexes, in solid state, with methyl-ß-cyclodextrin (Me-ß-CD), by inelastic and quasi elastic neutron scattering. The study was aimed at understanding, by the analysis of the vibrational and relaxational properties of the inclusion complexes also with respect to the single components, if and how the differences in the structural properties of the hydrogen bond (HB) network of (S)- and (R,S)-IBP can have influence on the complexation process triggered by "host-guest" interactions, whose detailed knowledge is retained as a prerequisite for enantiodiscrimination. From the results, a similar complexation mechanism for (S)- and (R,S)-IBP is argued, with a preferred penetration mode involving the isopropyl group of IBP.


Asunto(s)
Ibuprofeno/química , Conformación Molecular , Vibración , beta-Ciclodextrinas/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Difracción de Neutrones , Rotación , Análisis Espectral
7.
Environ Sci Technol ; 45(7): 2850-5, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21381672

RESUMEN

Within the wider context of water behavior in soils, and with a particular emphasis on clays surrounding underground radioactive waste packages, we present here the translational dynamics of water in clays in low hydrated states as studied by coupling molecular dynamics (MD) simulations and quasielastic neutron scattering experiments by neutron spin echo (NSE). A natural montmorillonite clay of interest is modeled by a synthetic clay which allows us to understand the determining parameters from MD simulations by comparison with the experimental values. We focus on temperatures between 300 and 350 K, i.e., the range relevant to the highlighted application. The activation energy Ea experimentally determined is 6.6 kJ/mol higher than that for bulk water. Simulations are in good agreement with experiments for the relevant set of conditions, and they give more insight into the origin of the observed dynamics.


Asunto(s)
Silicatos de Aluminio/química , Modelos Moleculares , Silicatos/química , Arcilla , Hidrodinámica , Espectrometría de Masas , Neutrones , Protección Radiológica/métodos , Suelo/química , Temperatura
8.
Biophys J ; 93(4): 1360-8, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17513357

RESUMEN

The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.


Asunto(s)
Eritrocitos/química , Hemoglobinas/química , Modelos Biológicos , Tamaño de la Célula , Difusión , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...