Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sci Rep ; 14(1): 10196, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702355

RESUMEN

Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.


Asunto(s)
Antibacterianos , Gentamicinas , Liposomas , Escherichia coli Uropatógena , Gentamicinas/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Portadores de Fármacos/química , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Pruebas de Sensibilidad Microbiana
2.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791567

RESUMEN

Mosquito saliva plays a crucial physiological role in both sugar and blood feeding by helping sugar digestion and exerting antihemostatic functions. During meal acquisition, mosquitoes are exposed to the internalization of external microbes. Since mosquitoes reingest significant amounts of saliva during feeding, we hypothesized that salivary antimicrobial components may participate in the protection of mouthparts, the crop, and the gut by inhibiting bacterial growth. To identify novel potential antimicrobials from mosquito saliva, we selected 11 candidates from Anopheles coluzzii salivary transcriptomic datasets and obtained them either using a cell-free transcription/translation expression system or, when feasible, via chemical synthesis. Hyp6.2 and hyp13, which were predicted to be produced as propeptides and cleaved in shorter mature forms, showed the most interesting results in bacterial growth inhibition assays. Hyp6.2 (putative mature form, 35 amino acid residues) significantly inhibited the growth of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Hyp13 (short form, 19 amino acid residues) dose-dependently inhibited E. coli and S. marcescens growth, inducing membrane disruption in both Gram-positive and Gram-negative bacteria as indicated with scanning electron microscopy. In conclusion, we identified two A. coluzzii salivary peptides inhibiting Gram-positive and Gram-negative bacteria growth and possibly contributing to the protection of mosquito mouthparts and digestive tracts from microbial infection during and/or after feeding.


Asunto(s)
Anopheles , Péptidos Antimicrobianos , Mosquitos Vectores , Saliva , Anopheles/metabolismo , Animales , Saliva/metabolismo , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/química , Malaria , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
3.
Front Cell Infect Microbiol ; 13: 1194254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389215

RESUMEN

Background: Atopic dermatitis (AD) is a chronic inflammatory skin condition whose pathogenesis involves genetic predisposition, epidermal barrier dysfunction, alterations in the immune responses and microbial dysbiosis. Clinical studies have shown a link between Staphylococcus aureus and the pathogenesis of AD, although the origins and genetic diversity of S. aureus colonizing patients with AD is poorly understood. The aim of the study was to investigate if specific clones might be associated with the disease. Methods: WGS analyses were performed on 38 S. aureus strains, deriving from AD patients and healthy carriers. Genotypes (i.e. MLST, spa-, agr- and SCCmec-typing), genomic content (e.g. virulome and resistome), and the pan-genome structure of strains have been investigated. Phenotypic analyses were performed to determine the antibiotic susceptibility, the biofilm production and the invasiveness within the investigated S. aureus population. Results: Strains isolated from AD patients revealed a high degree of genetic heterogeneity and a shared set of virulence factors and antimicrobial resistance genes, suggesting that no genotype and genomic content are uniquely associated with AD. The same strains were characterized by a lower variability in terms of gene content, indicating that the inflammatory conditions could exert a selective pressure leading to the optimization of the gene repertoire. Furthermore, genes related to specific mechanisms, like post-translational modification, protein turnover and chaperones as well as intracellular trafficking, secretion and vesicular transport, were significantly more enriched in AD strains. Phenotypic analysis revealed that all of our AD strains were strong or moderate biofilm producers, while less than half showed invasive capabilities. Conclusions: We conclude that in AD skin, the functional role played by S. aureus may depend on differential gene expression patterns and/or on post-translational modification mechanisms rather than being associated with peculiar genetic features.


Asunto(s)
Dermatitis Atópica , Humanos , Staphylococcus aureus/genética , Tipificación de Secuencias Multilocus , Genotipo , Piel
4.
Animals (Basel) ; 13(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37238068

RESUMEN

Escherichia coli is the bacterial pathogen most frequently associated with mare infertility. Here, we characterized 24 E. coli strains isolated from mares which presented signs of endometritis and infertility from a genotypic and phenotypic point of view. The majority of the isolates belonged to phylogenetic group B1 (9/24, 37.5%). Regarding antibiotic resistance profiles, 10 out of 24 (41.7%) were multidrug-resistant (MDR). Moreover, 17 out of 24 (70.8%) were strong or moderate biofilm producers, and of these eight were MDR strains. Interestingly, 21 out of 24 (87.5%) E. coli strains were phenotypically resistant to ampicillin and 10 of them were also resistant to amoxicillin with clavulanic acid. Regarding the presence of selected virulence factors, 50% of the examined strains carried at least three of them, with fimH detected in all strains, and followed by kpsMTII (11/24, 45.9%). No strain was able to invade HeLa cell monolayers. No relevant differences for all the investigated characteristics were shown by strains that grew directly on plates versus strains requiring the broth-enrichment step before growing on solid media. In conclusion, this work provides new insight into E. coli strains associated with mares' infertility. These results broaden the knowledge of E. coli and, consequently, add useful information to improve prevention strategies and therapeutic treatments contributing to a significant increase in the pregnancy rate in mares.

5.
Biometals ; 36(3): 491-507, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35768747

RESUMEN

Uropathogenic Escherichia coli (UPEC) strains are the primary cause of urinary tract infections (UTIs). UPEC strains are able to invade, multiply and persisting in host cells. Therefore, UPEC strains are associated to recurrent UTIs requiring long-term antibiotic therapy. However, this therapy is suboptimal due to the increase of multidrug-resistant UPEC. The use of non-antibiotic treatments for managing UTIs is required. Among these, bovine lactoferrin (bLf), a multifunctional cationic glycoprotein, could be a promising tool because inhibits the entry into the host cells of several intracellular bacteria. Here, we demonstrate that 100 µg/ml bLf hinders the invasion of 2.0 ± 0.5 × 104 CFU/ml E. coli CFT073, prototype of UPEC, infecting 2.0 ± 0.5 × 105 cells/ml urinary bladder T24 epithelial cells. The highest protection (100%) is due to the bLf binding with host surface components even if an additional binding to bacterial surface components cannot be excluded. Of note, in the absence of bLf, UPEC survives and multiplies, while bLf significantly decreases bacterial intracellular survival. After these encouraging results, an observational survey on thirty-three patients affected by recurrent cystitis was performed. The treatment consisted in the oral administration of bLf alone or in combination with antibiotics and/or probiotics. After the observation period, a marked reduction of cystitis episodes was observed (p < 0.001) in all patients compared to the episodes occurred during the 6 months preceding the bLf-treatment. Twenty-nine patients did not report cystitis episodes (87.9%) whereas the remaining four (12.1%) experienced only one episode, indicating that bLf could be a worthwhile and safe treatment in counteracting recurrent cystitis.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Lactoferrina , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Cistitis/tratamiento farmacológico , Cistitis/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Lactoferrina/farmacología , Lactoferrina/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
6.
Pharmaceutics ; 14(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36559155

RESUMEN

Infections caused by bacterial biofilms represent a global health problem, causing considerable patient morbidity and mortality in addition to an economic burden. Escherichia coli, Staphylococcus aureus, and other medically relevant bacterial strains colonize clinical surfaces and medical devices via biofilm in which bacterial cells are protected from the action of the immune system, disinfectants, and antibiotics. Several approaches have been investigated to inhibit and disperse bacterial biofilms, and the use of drug delivery could represent a fascinating strategy. Ciprofloxacin (CIP), which belongs to the class of fluoroquinolones, has been extensively used against various bacterial infections, and its loading in nanocarriers, such as niosomes, could support the CIP antibiofilm activity. Niosomes, composed of two surfactants (Tween 85 and Span 80) without the presence of cholesterol, are prepared and characterized considering the following features: hydrodynamic diameter, ζ-potential, morphology, vesicle bilayer characteristics, physical-chemical stability, and biological efficacy. The obtained results suggest that: (i) niosomes by surfactants in the absence of cholesterol are formed, can entrap CIP, and are stable over time and in artificial biological media; (ii) the CIP inclusion in nanocarriers increase its stability, with respect to free drug; (iii) niosomes preparations were able to induce a relevant inhibition of biofilm formation.

7.
Int J Nanomedicine ; 17: 6447-6465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36573206

RESUMEN

Purpose: Vitamin E (VitE) may be classified in "the first line of defense" against the formation of reactive oxygen species. Its inclusion in nanoemulsions (NEs) is a promising alternative to increase its bioavailability. The aim of this study was to compare O/W NEs including VitE based on Almond or Neem oil, showing themselves antioxidant properties. The potential synergy of the antioxidant activities of oils and vitamin E, co-formulated in NEs, was explored. Patients and Methods: NEs have been prepared by sonication and deeply characterized evaluating size, ζ-potential, morphology (TEM and SAXS analyses), oil nanodroplet feature, and stability. Antioxidant activity has been evaluated in vitro, in non-tumorigenic HaCaT keratinocytes, and in vivo through fluorescence analysis of C. elegans transgenic strain. Moreover, on healthy human volunteers, skin tolerability and anti-inflammatory activity were evaluated by measuring the reduction of the skin erythema induced by the application of a skin chemical irritant (methyl-nicotinate). Results: Results confirm that Vitamin E can be formulated in highly stable NEs showing good antioxidant activity on keratinocyte and on C. elegans. Interestingly, only Neem oil NEs showed some anti-inflammatory activity on healthy volunteers. Conclusion: From the obtained results, Neem over Almond oil is a more appropriate candidate for further studies on this application.


Asunto(s)
Antioxidantes , Vitamina E , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Vitamina E/farmacología , Caenorhabditis elegans , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Emulsiones/química
8.
Microorganisms ; 10(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889146

RESUMEN

Urinary tract infections (UTIs) are among the most common infections worldwide. Uropathogenic Escherichia coli (UPECs) are the main causative agent of UTIs. UPECs initially colonize the human host adhering to the bladder epithelium. Adhesion is followed by the bacterial invasion of urothelial epithelial cells where they can replicate to form compact aggregates of intracellular bacteria with biofilm-like properties. UPEC strains may persist within epithelial urothelial cells, thus acting as quiescent intracellular bacterial reservoirs (QIRs). It has been proposed that host cell invasion may facilitate both the establishment and persistence of UPECs within the human urinary tract. UPEC strains express a variety of virulence factors including fimbrial and afimbrial adhesins, invasins, iron-acquisition systems, and toxins, which cooperate to the establishment of long lasting infections. An increasing resistance rate relative to the antibiotics recommended by current guidelines for the treatment of UTIs and an increasing number of multidrug resistant UPEC isolates were observed. In order to ameliorate the cure rate and improve the outcomes of patients, appropriate therapy founded on new strategies, as alternative to antibiotics, needs to be explored. Here, we take a snapshot of the current knowledge of coordinated efforts to develop innovative anti-infective strategies to control the diffusion of UPECs.

9.
Antibiotics (Basel) ; 11(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35326791

RESUMEN

Multiple-antibiotic-resistant (MAR) extra-intestinal pathogenic Escherichia coli (ExPEC) represents one of the most frequent causes of human nosocomial and community-acquired infections, whose eradication is of major concern for clinicians. ExPECs may inhabit indefinitely as commensal the gut of humans and other animals; from the intestine, they may move to colonize other tissues, where they are responsible for a number of diseases, including recurrent and uncomplicated UTIs, sepsis and neonatal meningitis. In the pre-antibiotic era, heavy metals were largely used as chemotherapeutics and/or as antimicrobials in human and animal healthcare. As with antibiotics, the global incidence of heavy metal tolerance in commensal, as well as in ExPEC, has increased following the ban in several countries of antibiotics as promoters of animal growth. Furthermore, it is believed that extensive bacterial exposure to heavy metals present in soil and water might have favored the increase in heavy-metal-tolerant microorganisms. The isolation of ExPEC strains with combined resistance to both antibiotics and heavy metals has become quite common and, remarkably, it has been recently shown that heavy metal resistance genes may co-select antibiotic-resistance genes. Despite their clinical relevance, the mechanisms underlining the development and spread of heavy metal tolerance have not been fully elucidated. The aim of this review is to present data regarding the development and spread of resistance to first-line antibiotics, such as beta-lactams, as well as tolerance to heavy metals in ExPEC strains.

10.
Nanomaterials (Basel) ; 11(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203613

RESUMEN

The chemopreventive potential of Resveratrol (RV) against bladder cancer and its mechanism of action have been widely demonstrated. The physicochemical properties of RV, particularly its high reactivity and low solubility in aqueous phase, have been limiting factors for its bioavailability and in vivo efficacy. In order to overcome these limitations, its inclusion in drug delivery systems needs to be taken into account. In particular, oil-in-water (O/W) nanoemulsions (NEs) have been considered ideal candidates for RV encapsulation. Since surfactant and oil composition can strongly influence NE features and their application field, a ternary phase diagram was constructed and evaluated to select a suitable surfactant/oil/water ratio. The selected sample was deeply characterized in terms of physical chemical features, stability, release capability and cytotoxic activity. Results showed a significant decrease in cell viability after the incubation of bladder T24 cancer cells with RV-loaded NEs, compared to free RV. The selected NE formulation was able to preserve and improve RV cytotoxic activity by a more rapid drug uptake into the cells. O/W NEs represent an effective approach to improve RV bioavailability.

11.
Pharmaceutics ; 13(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494240

RESUMEN

Satureja montana essential oil (SEO) presents a wide range of biological activities due to its high content of active phytochemicals. In order to improve the essential oil's (EO) properties, oil in water nanoemulsions (NEs) composed of SEO and Tween-80 were prepared, characterized, and their antimicrobial and antibiofilm properties assayed against Escherichia coli strains isolated from healthy chicken. Since surfactant and oil composition can strongly influence NE features and their application field, a ternary phase diagram was constructed and evaluated to select a suitable surfactant/oil/water ratio. Minimal inhibitory concentration and minimal bactericidal concentration of NEs, evaluated by the microdilution method, showed that the SEO NE formulation exhibited higher inhibitory effects against planktonic E. coli than SEO alone. The quantification of biofilm production in the presence of NEs, assessed by crystal violet staining and scanning electron microscopy, evidenced that sub-MIC concentrations of SEO NEs enable an efficient reduction of biofilm production by the strong producer strains. The optimized nanoemulsion formulation could ensure food safety quality, and counteract the antibiotic resistance of poultry associated E. coli, if applied/aerosolized in poultry farms.

12.
Nanomaterials (Basel) ; 10(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158026

RESUMEN

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in a variety of consumer products. Cellular exposure to TiO2 NPs results in complex effects on cell physiology that could impact biological systems. We investigated the behavior of Listeria monocytogenes in intestinal epithelial cells pre-treated with either a low or high (1 and 20 µg/cm2) dose of TiO2 NPs. Our results indicate that the pre-treated cells with a low dose became more permissive to listeria infection; indeed, both adhesion and invasion were significantly increased compared to control. Increased invasion seems to be correlated to cytoskeletal alterations induced by nanoparticles, and higher bacterial survival might be due to the high levels of listeriolysin O that protects L. monocytogenes from reactive oxygen species (ROS). The potential risk of increased susceptibility to L. monocytogenes infection related to long-term intake of nanosized TiO2 at low doses should be considered.

13.
Artículo en Inglés | MEDLINE | ID: mdl-32984078

RESUMEN

Allergic rhinitis (AR) and adenoid hypertrophy (AH) are, in children, the main cause of partial or complete upper airway obstruction and reduction in airflow. However, limited data exist about the impact of the increased resistance to airflow, on the nasal microbial composition of children with AR end AH. Allergic rhinitis (AR) as well as adenoid hypertrophy (AH), represent extremely common pathologies in this population. Their known inflammatory obstruction is amplified when both pathologies coexist. In our study, the microbiota of anterior nares of 75 pediatric subjects with AR, AH or both conditions, was explored by 16S rRNA-based metagenomic approach. Our data show for the first time, that in children, the inflammatory state is associated to similar changes in the microbiota composition of AR and AH subjects respect to the healthy condition. Together with such alterations, we observed a reduced variability in the between-subject biodiversity on the other hand, these same alterations resulted amplified by the nasal obstruction that could constitute a secondary risk factor for dysbiosis. Significant differences in the relative abundance of specific microbial groups were found between diseased phenotypes and the controls. Most of these taxa belonged to a stable and quantitatively dominating component of the nasal microbiota and showed marked potentials in discriminating the controls from diseased subjects. A pauperization of the nasal microbial network was observed in diseased status in respect to the number of involved taxa and connectivity. Finally, while stable co-occurrence relationships were observed within both control- and diseases-associated microbial groups, only negative correlations were present between them, suggesting that microbial subgroups potentially act as maintainer of the eubiosis state in the nasal ecosystem. In the nasal ecosystem, inflammation-associated shifts seem to impact the more intimate component of the microbiota rather than representing the mere loss of microbial diversity. The discriminatory potential showed by differentially abundant taxa provide a starting point for future research with the potential to improve patient outcomes. Overall, our results underline the association of AH and AR with the impairment of the microbial interplay leading to unbalanced ecosystems.


Asunto(s)
Tonsila Faríngea , Microbiota , Rinitis Alérgica , Niño , Disbiosis , Humanos , Hipertrofia , Inflamación , Metagenómica , ARN Ribosómico 16S/genética
14.
Res Vet Sci ; 132: 150-155, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32585472

RESUMEN

Multiple antibiotic-resistant extra-intestinal pathogenic Escherichia coli (ExPEC) strains represent a serious health care problem both for poultry and humans. Recently isolates with combined resistance to both antibiotics and heavy metals have been increased worldwide, with growing concern for possible co-selection of antimicrobial resistant genes. In the present study we characterized, at a phenotypic and genetic level, 80 E. coli isolates: forty independent isolates were collected from manure samples of healthy chickens and 40 from independent human extra-intestinal infections (ExPEC strains). The results obtained indicated that i) compared to chicken, human isolates presented a broader spectrum of antibiotic resistance and virulence potentials; ii) although at a lower extent, ExPEC-associated virulence genes were also present in chicken isolates, suggesting they may be potentially pathogens; iii) that arsenic (As) and zinc (Zn) tolerance genetic determinants were significantly more prevalent among chicken and human isolates respectively, while those responsible for tolerance to cadmium (Cd), silver (Ag) and copper (Cu) were equally distributed among the two groups of strains; iv) a very strong correlation was found between chicken gentamicin (GM) resistance and cadmium (Cd) tolerance. Elucidating the role of heavy metals in the selection and spread of highly pathogenic E. coli strains (co-selection) is of primary importance to lower the potential risk of infections in poultry and humans. The control of bacterial zoonotic agents, that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations, could be of relevant interest.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana/genética , Escherichia coli Enteropatógena/fisiología , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Enfermedades de las Aves de Corral/microbiología , Animales , Antibacterianos/farmacología , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Marcadores Genéticos , Humanos , Metales Pesados/farmacología , Filogenia , Enfermedades de las Aves de Corral/genética , Virulencia
15.
Pharmaceutics ; 12(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861717

RESUMEN

Chemical fingerprints of four different Satureja montana L. essential oils (SEOs) were assayed by an untargeted metabolomics approach based on Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) coupled with either electrospray ionization or atmospheric pressure chemical ionization ion sources. Analysis and relative quantification of the non-polar volatile fraction were conducted by gas chromatography (GC) coupled to MS. FT-ICR MS confirmed significant differences in the polar metabolite composition, while GC-MS analyses confirmed slight fluctuations in the relative amount of major terpenes and terpenoids, known to play a key role in antimicrobial mechanisms. Oil in eater (O/W) nanoemulsions (NEs) composed by SEOs and Tween 20 or Tween 80 were prepared and analyzed in terms of hydrodynamic diameter, ζ-potential and polydispersity index. The results confirm the formation of stable NEs homogeneous in size. Minimum inhibitory and minimum bactericidal concentrations of SEOs were determined towards Gram-positive (Listeria monocytogenes, Staphylococcus aureus, Staphylococcus haemolyticus) and Gram-negative clinical isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens). Commercial SEO showed strongest antibacterial activity, while SEO 3 was found to be the most active among the lab made extractions. MIC and MBC values ranged from 0.39 to 6.25 mg·mL-1. Furthermore, a SEO structured in NEs formulation was able to preserve and improve antimicrobial activity.

16.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726759

RESUMEN

LF82, a prototype of adherent-invasive E. coli (AIEC), is able to adhere to, invade, survive and replicate into intestinal epithelial cells. LF82 is able to enhance either its adhesion and invasion by up-regulating carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM-6), the main cell surface molecule for bacterial adhesion, and its intracellular survival by inducing host DNA damage, thus blocking the cellular cycle. Lactoferrin (Lf) is a multifunctional cationic glycoprotein of natural immunity, exerting an anti-invasive activity against LF82 when added to Caco-2 cells at the moment of infection. Here, the infection of 12 h Lf pre-treated Caco-2 cells was carried out at a time of 0 or 3 or 10 h after Lf removal from culture medium. The effect of Lf pre-treatment on LF82 invasiveness, survival, cell DNA damage, CEACAM-6 expression, apoptosis induction, as well as on Lf subcellular localization, has been evaluated. Lf, even if removed from culture medium, reduced LF82 invasion and survival as well as bacteria-induced DNA damage in Caco-2 cells independently from induction of apoptosis, modulation of CEACAM-6 expression and Lf sub-cellular localization. At our knowledge, this is the first study showing that the sole Lf pre-treatment can activate protective intracellular pathways, reducing LF82 invasiveness, intracellular survival and cell-DNA damages.


Asunto(s)
Diferenciación Celular , Daño del ADN , Enterocitos , Escherichia coli Enteropatógena/crecimiento & desarrollo , Infecciones por Escherichia coli , Lactoferrina/farmacología , Animales , Células CACO-2 , Bovinos , Enterocitos/metabolismo , Enterocitos/microbiología , Enterocitos/patología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Humanos
17.
Microb Pathog ; 126: 323-331, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30458252

RESUMEN

Many essential oils (EOs) are screened as potential sources of antimicrobial compounds. EOs from the genus Satureja have recognized biological properties, including analgesic, anti-inflammatory, immunomodulatory, anticancer, and antimicrobial activity. This study aimed to obtain a metabolite profile of commercial essential oil of S. montana L. (SEO) and to evaluate its antimicrobial properties, both alone and combined with gentamicin towards Gram-negative and Gram-positive bacterial strains. Untargeted analyses based on direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and on GC-MS have provided a high metabolome coverage, allowing to identify carvacrol, cymene and thymol as the major components of commercial SEO. SEO exerted an antimicrobial activity and induced a synergistic interaction with gentamicin against both reference and clinical bacterial strains. A significant reduction of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes biofilm formation was induced by SEO. As a result of SEO treatment, clear morphological bacterial alterations were visualized by scanning electron microscopy: L. monocytogenes and S. aureus showed malformed cell surface or broken cells with pores formation, whereas E. coli displayed collapsed cell surface. These results encourage further studies about bactericidal and antibiotic synergistic effect of SEO for combined therapy in clinical setting as well as in agricultural systems.


Asunto(s)
Antiinfecciosos/farmacología , Gentamicinas/farmacología , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Satureja/química , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cimenos , Combinación de Medicamentos , Sinergismo Farmacológico , Cromatografía de Gases y Espectrometría de Masas , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/citología , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Aceites Volátiles/química , Aceites de Plantas/química , Timol/aislamiento & purificación , Timol/farmacología
18.
Microbiologyopen ; 8(6): e00756, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30381890

RESUMEN

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Although a number of bacteria can cause UTIs, most cases are due to infection by uropathogenic Escherichia coli (UPEC). UPEC are a genetically heterogeneous group that exhibit several virulence factors associated with colonization and persistence of bacteria in the urinary tract. Caenorhabditis elegans is a tiny, free-living nematode found worldwide. Because many biological pathways are conserved in C. elegans and humans, the nematode has been increasingly used as a model organism to study virulence mechanisms of microbial infections and innate immunity. The virulence of UPEC strains, characterized for antimicrobial resistance, pathogenicity-related genes associated with virulence and phylogenetic group belonging was evaluated by measuring the survival of C. elegans exposed to pure cultures of these strains. Our results showed that urinary strains can kill the nematode and that the clinical isolate ECP110 was able to efficiently colonize the gut and to inhibit the host oxidative response to infection. Our data support that C. elegans, a free-living nematode found worldwide, could serve as an in vivo model to distinguish, among uropathogenic E. coli, different virulence behavior.


Asunto(s)
Caenorhabditis elegans/microbiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Animales , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Filogenia , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/fisiología , Virulencia
19.
New Microbiol ; 41(3): 238-241, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29874385

RESUMEN

Capsular contracture is one of the most common complications of implant-based breast augmentation. Despite its prevalence, the etiology of capsular contracture remains controversial although the surface texture of the breast implant, the anatomical position of the prosthesis and the presence of bacterial biofilm could be considered trigger factors. In fact, all medical implants are susceptible to bacterial colonization and biofilm formation. The present study demonstrated the presence of microbial biofilm constituted by cocci in a breast implant obtained from a patient with Baker grade II capsular contracture. This suggests that subclinical infection can be present and involved in low grade capsular contracture.


Asunto(s)
Infecciones Bacterianas/microbiología , Biopelículas , Implantes de Mama/efectos adversos , Adulto , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Infecciones Bacterianas/patología , Femenino , Humanos , Pruebas de Sensibilidad Microbiana
20.
J Enzyme Inhib Med Chem ; 32(1): 1265-1273, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965424

RESUMEN

The aim of the present work is to develop nanoemulsions (NEs), nanosized emulsions, manufactured for improving the delivery of active pharmaceutical ingredients. In particular, nanoemulsions composed of Neem seed oil, contain rich bioactive components, and Tween 20 as nonionic surfactant were prepared. A mean droplet size ranging from 10 to 100 nm was obtained by modulating the oil/surfactant ratio. Physicochemical characterisation was carried out evaluating size, ζ-potential, microviscosity, polarity and turbidity of the external shell and morphology, along with stability in simulated cerebrospinal fluid (CSF), activity of Neem oil alone and in NEs, HEp-2 cell interaction and cytotoxicity studies. This study confirms the formation of NEs by Tween 20 and Neem oil at different weight ratios with small and homogenous dimensions. The antioxidant activity of Neem oil alone and in NEs was comparable, whereas its cytotoxicity was strongly reduced when loaded in NEs after interaction with HEp-2 cells.


Asunto(s)
Antioxidantes/farmacología , Glicéridos/farmacología , Nanopartículas/química , Terpenos/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Emulsiones/síntesis química , Emulsiones/química , Emulsiones/farmacología , Glicéridos/síntesis química , Glicéridos/química , Humanos , Tamaño de la Partícula , Relación Estructura-Actividad , Terpenos/síntesis química , Terpenos/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...