RESUMEN
Introduction: Human trophoblastic cell lines, such as BeWo, are commonly used in 2D models to study placental Trypanosoma cruzi infections. However, these models do not accurately represent natural infections. Three-dimensional (3D) microtissue cultures offer a more physiologically relevant in vitro model, mimicking tissue microarchitecture and providing an environment closer to natural infections. These 3D cultures exhibit functions such as cell proliferation, differentiation, morphogenesis, and gene expression that resemble in vivo conditions. Methods: We developed a 3D culture model using the human trophoblastic cell line BeWo and nonadherent agarose molds from the MicroTissues® 3D Petri Dish® system. Both small (12-256) and large (12-81) models were tested with varying initial cell numbers. We measured the diameter of the 3D cultures and evaluated cell viability using Trypan Blue dye. Trophoblast functionality was assessed by measuring ß-hCG production via ELISA. Cell fusion was evaluated using confocal microscopy, with Phalloidin or ZO-1 marking cell edges and DAPI staining nuclei. T. cruzi infection was assessed by microscopy and quantitative PCR, targeting the EF1-α gene for T. cruzi and GAPDH for BeWo cells, using three parasite strains: VD (isolated from a congenital Chagas disease infant and classified as Tc VI), and K98 and Pan4 (unrelated to congenital infection and classified as Tc I). Results: Seeding 1000 BeWo cells per microwell in the large model resulted in comparable cellular viability to 2D cultures, with a theoretical diameter of 408.68 ± 12.65 µm observed at 5 days. Functionality, assessed through ß-hCG production, exceeded levels in 2D cultures at both 3 and 5 days. T. cruzi infection was confirmed by qPCR and microscopy, showing parasite presence inside the cells for all three tested strains. The distribution and progression of the infection varied with each strain. Discussion: This innovative 3D model offers a simple yet effective approach for generating viable and functional cultures susceptible to T. cruzi infection, presenting significant potential for studying the placental microenvironment.
Asunto(s)
Enfermedad de Chagas , Placenta , Trofoblastos , Trypanosoma cruzi , Humanos , Trofoblastos/parasitología , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/fisiología , Femenino , Embarazo , Placenta/parasitología , Enfermedad de Chagas/parasitología , Línea Celular , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular , Técnicas de Cultivo Tridimensional de Células/métodosRESUMEN
Chagas disease (CD) is a neglected disease caused by Trypanosoma cruzi Chagas, 1909. Causative treatment can be achieved with two drugs: benznidazole or Nifurtimox. There are some gaps that hinder progress in eradicating the disease. There is no test that can efficiently assess cure control after treatment. Currently, the decline in anti-T. cruzi antibody titres is assessed with conventional serological tests, which can take years. However, the search for new markers of cure must continue to fill this gap. The present study aimed to evaluate the decline in serological titres using chimeric proteins after treatment with benznidazole in chronic patients diagnosed with CD. It was a prospective cross-sectional cohort study between 2000 and 2004 of T. cruzi-positive participants from the Añatuya region (Argentina) treated with benznidazole. Serum samples from ten patients were collected before treatment (day zero) and after the end of treatment (2, 3, 6, 12, 24 and 36 months). For the detection of anti-T. cruzi antibodies, an indirect ELISA was performed using two chimeric recombinant proteins (IBMP-8.1 and IBMP-8.4) as antigens. The changes in reactivity index within the groups before and after treatment were evaluated using the Friedman test. All participants experienced a decrease in serological titres after treatment with benznidazole, especially IBMP-8.1. However, due to the small number of samples and the short follow-up period, it is premature to conclude that this molecule serves as a criterion for sustained cure. Further studies are needed to validate tests based on these or other biomarkers to demonstrate parasitological cure.
Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Trypanosoma cruzi , Humanos , Estudios Transversales , Estudios Prospectivos , Enfermedad de Chagas/tratamiento farmacológico , Proteínas Recombinantes de Fusión/uso terapéuticoRESUMEN
BACKGROUND: Chagas disease or American trypanosomiasis, a neglected tropical disease, is a persistent Public Health problem in Latin America and other, non-endemic, countries. Point-of-care (POC) sensitive methods are still needed to improve and extend early diagnosis in acute infections such as congenital Chagas disease. The objective of this study was to analytically evaluate in the lab the performance of a qualitative POC molecular test (Loop-mediated isothermal amplification (LAMP), Eiken, Japan) for rapid diagnosis of congenital Chagas disease employing FTA cards or Whatman 903 filter paper as solid supports for small-scale volumes of human blood. METHODOLOGY/PRINCIPAL FINDINGS: We used human blood samples artificially infected with cultured T. cruzi strains to assess the analytical performance of the test in comparison with liquid blood anticoagulated with heparin. The DNA extraction process was evaluated using the ultrarapid purification system PURE manufactured by Eiken Chemical Company (Tokio, Japan) over artificially infected liquid blood or different amounts of dried blood spot (DBS) 3- and 6-mm pieces of FTA and Whatman 903 paper. LAMP was performed on a AccuBlock (LabNet, USA) heater or in the Loopamp LF-160 incubator (Eiken, Japan), and visualization of results was either done at naked eye, using the LF-160 device or P51 Molecular Fluorescence Viewer (minipcr bio, USA). Best conditions tested showed a limit of detection (LoD) with 95% accuracy (19/20 replicates) of 5 and 20 parasites/mL, respectively for heparinized fluid blood or DBS samples. FTA cards showed better specificity than Whatman 903 filter paper. CONCLUSIONS/SIGNIFICANCE: Procedures to operate LAMP reactions from small volumes of fluid blood or DBS in FTA were standardized for LAMP detection of T. cruzi DNA. Our results encourage prospective studies in neonates born to seropositive women or oral Chagas disease outbreaks to operationally evaluate the method in the field.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Recién Nacido , Humanos , Femenino , Trypanosoma cruzi/genética , Estudios Prospectivos , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/congénitoRESUMEN
There is no consensus on the diagnostic algorithms for many scenarios of Trypanosoma cruzi infection, which hinders the establishment of governmental guidelines in endemic and non-endemic countries. In the acute phase, parasitological methods are currently employed, and standardised surrogate molecular tests are being introduced to provide higher sensitivity and less operator-dependence. In the chronic phase, IgG-based serological assays are currently used, but if a single assay does not reach the required accuracy, PAHO/WHO recommends at least two immunological tests with different technical principles. Specific algorithms are applied to diagnose congenital infection, screen blood and organ donors or conduct epidemiological surveys. Detecting Chagas disease reactivation in immunosuppressed individuals is an area of increasing interest. Due to its neglect, enhancing access to diagnosis of patients at risk of suffering T. cruzi infection should be a priority at national and regional levels.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/epidemiología , Humanos , Huésped Inmunocomprometido , Infección Persistente , Trypanosoma cruzi/genéticaRESUMEN
A loop-mediated isothermal amplification assay was evaluated as a surrogate marker of treatment failure in Chagas disease (CD). A convenience series of 18 acute or reactivated CD patients who received anti-parasitic treatment with benznidazole was selected-namely, nine orally infected patients: three people living with HIV and CD reactivation, five chronic CD recipients with reactivation after organ transplantation and one seronegative recipient of a kidney and liver transplant from a CD donor. Fifty-four archival samples (venous blood treated with EDTA or guanidinium hydrochloride-EDTA buffer and cerebrospinal fluid) were extracted using a Spin-column manual kit and tested by T. cruzi Loopamp kit (Tc-LAMP, index test) and standardized real-time PCR (qPCR, comparator test). Of them, 23 samples were also extracted using a novel repurposed 3D printer designed for point-of-care DNA extraction (PrintrLab). The agreement between methods was estimated by Cohen's kappa index and Bland-Altman plot analysis. The T. cruzi Loopamp kit was as sensitive as qPCR for detecting parasite DNA in samples with parasite loads higher than 0.5 parasite equivalents/mL and infected with different discrete typing units. The agreement between qPCR and Tc-LAMP (Spin-column) or Tc-LAMP (PrintrLab) was excellent, with a mean difference of 0.02 [CI = -0.58-0.62] and -0.04 [CI = -0.45-0.37] and a Cohen's kappa coefficient of 0.78 [CI = 0.60-0.96] and 0.90 [CI = 0.71 to 1.00], respectively. These findings encourage prospective field studies to validate the use of LAMP as a surrogate marker of treatment failure in CD.
RESUMEN
There is no consensus on the diagnostic algorithms for many scenarios of Trypanosoma cruzi infection, which hinders the establishment of governmental guidelines in endemic and non-endemic countries. In the acute phase, parasitological methods are currently employed, and standardised surrogate molecular tests are being introduced to provide higher sensitivity and less operator-dependence. In the chronic phase, IgG-based serological assays are currently used, but if a single assay does not reach the required accuracy, PAHO/WHO recommends at least two immunological tests with different technical principles. Specific algorithms are applied to diagnose congenital infection, screen blood and organ donors or conduct epidemiological surveys. Detecting Chagas disease reactivation in immunosuppressed individuals is an area of increasing interest. Due to its neglect, enhancing access to diagnosis of patients at risk of suffering T. cruzi infection should be a priority at national and regional levels.
RESUMEN
BACKGROUND: Current algorithm for Congenital Chagas Disease (cCD) diagnosis is unsatisfactory due to low sensitivity of the parasitological methods. Moreover, loss to follow-up precludes final serodiagnosis after nine months of life in many cases. A duplex TaqMan qPCR kit for Trypanosoma cruzi DNA amplification was prospectively evaluated in umbilical cord (UCB) and peripheral venous blood (PVB) of infants born to CD mothers at endemic and non-endemic sites of Argentina. METHODS: We enrolled and followed-up 370 infants; qPCR was compared to gold-standard cCD diagnosis following studies of diagnostic accuracy guidelines. FINDINGS: Fourteen infants (3·78%) had cCD. The qPCR sensitivity and specificity were higher in PVB (72·73%, 99·15% respectively) than in UCB (66·67%, 96·3%). Positive and negative predictive values were 80 and 98·73% and 50 and 98·11% for PVB and UCB, respectively. The Areas under the Curve (AUC) of ROC analysis for qPCR and micromethod (MM) were 0·81 and 0·67 in UCB and 0·86 and 0·68 in PVB, respectively. Parasitic loads ranged from 37·5 to 23,709 parasite equivalents/mL. Discrete typing Unit Tc V was identified in five cCD patients and in six other cCD cases no distinction among Tc II, Tc V or Tc VI was achieved. INTERPRETATION: This first prospective field study demonstrated that qPCR was more sensitive than MM for early cCD detection and more accurate in PVB than in UCB. Its use, as an auxiliary diagnostic tool to MM will provide more accurate records on cCD incidence. FUNDING: FITS SALUD 001-CHAGAS (FONARSEC, MINCyT, Argentina) to the Public-Private Consortium (INGEBI-CONICET, INP-ANLIS MALBRAN and Wiener Laboratories); ERANET-LAC-HD 328 to AGS and PICT 2015-0074 (FONCYT, MinCyT) to AGS and FA.
Asunto(s)
Enfermedad de Chagas/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Enfermedad de Chagas/congénito , Diagnóstico Precoz , Femenino , Humanos , Recién Nacido , Masculino , Juego de Reactivos para Diagnóstico/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Sensibilidad y EspecificidadRESUMEN
A Trypanosoma cruzi Loopamp kit was recently developed as a ready-to-use diagnostic method requiring minimal laboratory facilities. We evaluated its diagnostic accuracy for detection of acute Chagas disease (CD) in different epidemiological and clinical scenarios. In this retrospective study, a convenience series of clinical samples (venous blood treated with EDTA or different stabilizer agents, heel-prick blood in filter paper or cerebrospinal fluid samples (CSF)) from 30 infants born to seropositive mothers (13 with congenital CD and 17 noninfected), four recipients of organs from CD donors, six orally-infected cases after consumption of contaminated guava juice and six CD patients coinfected with HIV at risk of CD reactivation (N = 46 patients, 46 blood samples and 1 CSF sample) were tested by T. cruzi Loopamp kit (Tc LAMP) and standardized quantitative real-time PCR (qPCR). T. cruzi Loopamp accuracy was estimated using the case definition in the different groups as a reference. Cohen's kappa coefficient (κ) was applied to measure the agreement between Tc LAMP (index test) and qPCR (reference test). Sensitivity and specificity of T. cruzi Loopamp kit in blood samples from the pooled clinical groups was 93% (95% CI: 77-99) and 100% (95% CI: 80-100) respectively. The agreement between Tc LAMP and qPCR was almost perfect (κ = 0.92, 95% CI: 0.62-1.00). The T. cruzi Loopamp kit was sensitive and specific for detection of T. cruzi infection. It was carried out from DNA extracted from peripheral blood samples (via frozen EDTA blood, guanidine hydrochloride-EDTA blood, DNAgard blood and dried blood spots), as well as in CSF specimens infected with TcI or TcII/V/VI parasite populations. The T. cruzi Loopamp kit appears potentially useful for rapid detection of T. cruzi infection in congenital, acute and CD reactivation due to HIV infection.
Asunto(s)
Enfermedad de Chagas/sangre , Enfermedad de Chagas/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Trypanosoma cruzi/aislamiento & purificación , Enfermedad de Chagas/líquido cefalorraquídeo , Enfermedad de Chagas/congénito , Coinfección , ADN Protozoario/análisis , Femenino , Infecciones por VIH , Humanos , Lactante , Recién Nacido , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estudios Retrospectivos , Sensibilidad y Especificidad , Receptores de Trasplantes , Trypanosoma cruzi/fisiologíaRESUMEN
BACKGROUND: Laboratory diagnosis of chronic Chagas disease is a troubling factor due to lack of reference tests. The WHO suggests the use of two distinct commercial serological tests in parallel. The performance of commercial immunoassays might fluctuate depending on the antigenic matrices and the local strains of T. cruzi in different geographical settings. The use of antigenic matrices based on chimeric proteins can solve these limitations. Here, we evaluated the diagnostic performance of two chimeric T. cruzi antigens (IBMP-8.1 and -8.4) to diagnose chronic Chagas disease in individuals from endemic South American countries. METHODOLOGY/PRINCIPAL FINDINGS: IBMP-8.1 and IBMP-8.4 chimeric antigens were expressed as soluble proteins in E. coli and purified using chromatography methods. Reactivity of IBMP-8.1 and IBMP-8.4 was assessed using an in-house ELISA with sera from 122 non-infected and 215 T. cruzi-infected individuals from Argentina, Bolivia, and Paraguay. Cut-off values were based on ROC curves and performance parameters were determined using a dichotomous approach. Area under the curve values were > 99.7% for both IBMP-8.1 and IBMP-8.4 antigens. IgG levels in T. cruzi-positive and negative samples were higher for IBMP-8.4 than IBMP-8.1. Both IBMP-8.1 and -8.4 were 100% specific, while IBMP-8.4 were 100% sensitive compared to IBMP-8.1 (95.3%). Admitting RI values of 1.0 ± 0.10 as the inconclusive interval, 6.2% of the samples tested using IBMP-8.1 and 2.1% using IBMP-8.4 fell inside the grey zone. Based on accuracy and diagnostic odds ratio values, IBMP-8.4 presented the best performance. Differences in sensitivity and IgG levels among the samples from Argentina, Bolivia, and Paraguay were not significant. CONCLUSIONS/SIGNIFICANCE: Our findings showed a notable performance of IBMP-8.1 and -8.4 chimeric antigens in diagnosing chronic Chagas disease in individuals from endemic South American countries, confirming our hypothesis that these antigens could be used in geographical areas where distinct T. cruzi DTUs occur.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/química , Enfermedad de Chagas/sangre , Inmunoglobulina G/sangre , Trypanosoma cruzi , Enfermedad de Chagas/epidemiología , Enfermedad Crónica , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Proteínas Recombinantes de Fusión/química , América del Sur/epidemiologíaRESUMEN
Several studies have proposed different genetic markers of susceptibility to develop chronic Chagas cardiomyopathy (CCC). Many genes may be involved, each one making a small contribution. For this reason, an appropriate approach for this problematic is to study a large number of single nucleotide polymorphisms (SNPs) in individuals sharing a genetic background. Our aim was to analyze two CCR2 and seven CCR5 SNPs and their association to CCC in Argentina. A case-control study was carried out in 480 T. cruzi seropositive adults from Argentinean Gran Chaco endemic region (Wichi and Creole) and patients from Buenos Aires health centres. They were classified according to the Consensus on Chagas-Mazza Disease as non-demonstrated (non-DC group) or demonstrated (DC group) cardiomyopathy, i.e. asymptomatic or with CCC patients, respectively. Since, after allelic analysis, 2 out of 9 studied SNPs did not fit Hardy-Weinberg equilibrium in the unaffected non-DC group from Wichi patients, we analyzed them as a separate population. Only rs1800024T and rs41469351T in CCR5 gene showed significant differences within non-Wichi population (Creole + patients from Buenos Aires centres), being the former associated to protection, and the latter to risk of CCC. No evidence of association was observed between any of the analyzed CCR2-CCR5 gene polymorphisms and the development of CCC; however, the HHE haplotype was associated with protection in Wichi population. Our findings support the hypothesis that CCR2-CCR5 genes and their haplotypes are associated with CCC; however, depending on the population studied, different associations can be found. Therefore, the evolutionary context, in which the genes or haplotypes are associated with diseases, acquires special relevance.
Asunto(s)
Cardiomiopatía Chagásica/genética , Predisposición Genética a la Enfermedad , Receptores CCR2/genética , Receptores CCR5/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Argentina , Estudios de Casos y Controles , Femenino , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto JovenRESUMEN
The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.
Asunto(s)
Enfermedad de Chagas/inmunología , Linfocitos T/inmunología , Trypanosoma cruzi/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Línea Celular Transformada , Enfermedad Crónica , Humanos , Memoria Inmunológica , Técnicas In VitroRESUMEN
Congenital infection of Trypanosoma cruzi allows transmission of this parasite through generations. Despite the problematic that this entails, little is known about the placenta environment genetic response produced against infection. We performed functional genomics by microarray analysis in C57Bl/6J mice comparing placentas from uninfected animals and from animals infected with two different T. cruzi strains: K98, a clone of the non-lethal myotropic CA-I strain (TcI), and VD (TcVI), isolated from a human case of congenital infection. Analysis of networks by GeneMANIA of differentially expressed genes showed that "Secretory Granule" was a pathway down-regulated in both infected groups, whereas "Innate Immune Response" and "Response to Interferon-gamma" were pathways up-regulated in VD infection but not in K98. Applying another approach, the GSEA algorithm that detects small changes in predetermined gene sets, we found that metabolic processes, transcription and macromolecular transport were down-regulated in infected placentas environment and some pathways related to cascade signaling had opposite regulation: over-represented in VD and down-regulated in K98 group. We also have found a stronger tropism to the placental organ by VD strain, by detection of parasite DNA and RNA, suggesting living parasites. Our study is the first one to describe in a murine model the genetic response of placental environment to T. cruzi infection and suggests the development of a strong immune response, parasite genotype-dependent, to the detriment of cellular metabolism, which may contribute to control infection preventing the risk of congenital transmission.
Asunto(s)
Enfermedad de Chagas/parasitología , Genotipo , Placenta/patología , Placenta/parasitología , Complicaciones Infecciosas del Embarazo/parasitología , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética , Animales , Enfermedad de Chagas/patología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Análisis por Micromatrices , Embarazo , Complicaciones Infecciosas del Embarazo/patologíaRESUMEN
This study aimed to evaluate well-documented diagnostic antigens, named B13, 1F8 and JL7 recombinant proteins, as potential markers of seroconversion in treated chagasic patients. Prospective study, involving 203 patients treated with benznidazole, was conducted from endemic areas of northern Argentina. Follow-up was possible in 107 out of them and blood samples were taken for serology and PCR assays before and 2, 3, 6, 12, 24 and 36 months after treatment initiation. Reactivity against Trypanosoma cruzi lysate and recombinant antigens was measured by ELISA. The rate of decrease of antibody titers showed nonlinear kinetics with an abrupt drop within the first three months after initiation of treatment for all studied antigens, followed by a plateau displaying a low decay until the end of follow-up. At this point, anti-B13, anti-1F8 and anti-JL7 titers were relatively close to the cut-off line, while anti-T. cruzi antibodies still remained positive. At baseline, 60.8% (45/74) of analysed patients tested positive for parasite DNA by PCR and during the follow-up period in 34 out of 45 positive samples (75.5%) could not be detected T. cruzi DNA. Our results suggest that these antigens might be useful as early markers for monitoring antiparasitic treatment in chronic Chagas disease.
Asunto(s)
Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adulto Joven , Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/tratamiento farmacológico , Nitroimidazoles/uso terapéutico , Tripanocidas/uso terapéutico , Antígenos de Protozoos/inmunología , Argentina , Enfermedad de Chagas/sangre , Enfermedad Crónica , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Estudios de Seguimiento , Estudios Prospectivos , Factores de TiempoRESUMEN
This study aimed to evaluate well-documented diagnostic antigens, named B13, 1F8 and JL7 recombinant proteins, as potential markers of seroconversion in treated chagasic patients. Prospective study, involving 203 patients treated with benznidazole, was conducted from endemic areas of northern Argentina. Follow-up was possible in 107 out of them and blood samples were taken for serology and PCR assays before and 2, 3, 6, 12, 24 and 36 months after treatment initiation. Reactivity against Trypanosoma cruzi lysate and recombinant antigens was measured by ELISA. The rate of decrease of antibody titers showed nonlinear kinetics with an abrupt drop within the first three months after initiation of treatment for all studied antigens, followed by a plateau displaying a low decay until the end of follow-up. At this point, anti-B13, anti-1F8 and anti-JL7 titers were relatively close to the cut-off line, while anti-T. cruzi antibodies still remained positive. At baseline, 60.8% (45/74) of analysed patients tested positive for parasite DNA by PCR and during the follow-up period in 34 out of 45 positive samples (75.5%) could not be detected T. cruzi DNA. Our results suggest that these antigens might be useful as early markers for monitoring antiparasitic treatment in chronic Chagas disease.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/tratamiento farmacológico , Nitroimidazoles/uso terapéutico , Tripanocidas/uso terapéutico , Adulto , Antígenos de Protozoos/inmunología , Argentina , Enfermedad de Chagas/sangre , Enfermedad Crónica , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Tiempo , Adulto JovenRESUMEN
Enzyme catalysis was applied to synthesize derivatives of three bile acids and their biological activity was evaluated as growth inhibitors of the protozoan Trypanosoma cruzi. Twelve mono-, diacetyl and ester derivatives of deoxycholic, chenodeoxycholic and lithocholic acid, seven of them new compounds, were obtained through lipase-catalyzed acetylation, esterification and alcoholysis reactions in very good to excellent yield and a highly regioselective way. Among them, acetylated ester products, in which the lipase catalyzed both reactions in one-pot, were obtained. The influence of various reaction parameters in the enzymatic reactions, such as enzyme source, acylating agent/substrate ratio, enzyme/substrate ratio, solvent and temperature, was studied. Some of the evaluated compounds showed a remarkable activity as Trypanosoma cruzi growth inhibitors, obtaining the best results with ethyl chenodeoxycholate 3-acetate and chenodeoxycholic acid 3,7-diacetate, which showed IC50: 8.6 and 22.8 µM, respectively. In addition, in order to shed light to bile acids behavior in enzymatic reactions, molecular modeling was applied to some derivatives. The advantages showed by the enzymatic methodology, such as mild reaction conditions and low environmental impact, make the biocatalysis a convenient way to synthesize these bile acid derivatives with application as potential antiparasitic agents.
Asunto(s)
Antiprotozoarios/farmacología , Ácidos y Sales Biliares/química , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Trypanosoma cruzi/efectos de los fármacos , Acetilación , Antiprotozoarios/química , Antiprotozoarios/metabolismo , Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/farmacología , Sitios de Unión , Biocatálisis , Evaluación Preclínica de Medicamentos , Esterificación , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Solventes/química , Estereoisomerismo , Especificidad por Sustrato , Temperatura , Trypanosoma cruzi/crecimiento & desarrolloRESUMEN
BACKGROUND: Trypanosoma cruzi ribosomal P proteins, P2ß and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC). It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with ß1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC) stimulated with P2ß, the C-terminal portion of P0 (CP0) proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2ß or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells. CONCLUSIONS/SIGNIFICANCE: Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T. cruzi infection.
Asunto(s)
Cardiomiopatía Chagásica/patología , Citocinas/metabolismo , Leucocitos Mononucleares/inmunología , Subgrupos Linfocitarios/inmunología , Fosfoproteínas/inmunología , Proteínas Protozoarias/inmunología , Proteínas Ribosómicas/inmunología , Trypanosoma cruzi/inmunología , Adulto , Anciano , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana EdadRESUMEN
The aim of this work was to investigate the potential usefulness of Trypanosoma cruzi lysate, recombinant protein JL7, and peptides P013, R13, JL18, JL19, and P0ß as serological markers for human Chagas disease. We analyzed 228 sera from Brazilian Chagas disease patients classified into four clinical groups and 108 from non-chagasic patients. We defined the diagnostic sensitivity, specificity, and Kappa index measured by enzyme-linked immunosorbent assay (ELISA). As previously described, the highest values of diagnostic parameters were achieved for T. cruzi lysate and JL7; peptide P013 showed high specificity but low sensitivity. The other peptides resulted in lower sensitivity and specificity in our ELISA than T. cruzi lysate and JL7 protein. Antibodies against JL7 protein were mainly detected in sera from patients with severe chagasic cardiomyopathy, compared with those from the indeterminate form, whereas peptides failed to discriminate between the clinical forms of the disease.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Enfermedad de Chagas/parasitología , Ensayo de Inmunoadsorción Enzimática/métodos , Trypanosoma cruzi/aislamiento & purificación , Adolescente , Adulto , Animales , Anticuerpos Antiprotozoarios/inmunología , Brasil , Enfermedad de Chagas/sangre , Enfermedad de Chagas/inmunología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/inmunología , Sensibilidad y Especificidad , Adulto JovenRESUMEN
The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2ß protein (TcP2ß) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope.
Asunto(s)
Anticuerpos Antiprotozoarios/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Protozoarias/biosíntesis , Proteínas Ribosómicas/antagonistas & inhibidores , Anticuerpos de Cadena Única/farmacología , Trypanosoma cruzi/metabolismo , Anticuerpos Antiprotozoarios/química , Anticuerpos Antiprotozoarios/genética , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/metabolismo , Epítopos/química , Epítopos/inmunología , Expresión Génica , Humanos , Modelos Moleculares , Filogenia , Unión Proteica/efectos de los fármacos , Conformación Proteica , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/clasificación , Proteínas Ribosómicas/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/inmunologíaRESUMEN
The large subunit of the eukaryotic ribosome possesses a long and protruding stalk formed by the ribosomal P proteins. This structure is involved in the translation step of protein synthesis through interaction with the elongation factor 2 (EF-2). The Trypanosoma cruzi stalk complex is composed of four proteins of about 11 kDa, TcP1α, TcP1ß, TcP2α, TcP2ß and a fifth TcP0 of about 34 kDa. In a previous work, a yeast two-hybrid (Y2H) protein-protein interaction map of T. cruzi ribosomal P proteins was generated. In order to gain new insight into the assembly of the stalk, a complete interaction map was generated by surface plasmon resonance (SPR) and the kinetics of each interaction was calculated. All previously detected interactions were confirmed and new interacting pairs were found, such as TcP1ß-TcP2α and TcP1ß-TcP2ß. Moreover P2 but not P1 proteins were able to homo-oligomerize. In addition, the region comprising amino acids 210-270 on TcP0 was identified as the region interacting with P1/P2 proteins, using Y2H and SPR. The interaction domains on TcP2ß were also mapped by SPR identifying two distinct regions. The assembly order of the pentameric complex was assessed by SPR showing the existence of a hierarchy in the association of the different P proteins forming the stalk. Finally, the TcEF-2 gene was identified, cloned, expressed and refolded. Using SPR analysis we showed that TcEF-2 bound with similar affinity to the four P1/P2 ribosomal P proteins of T. cruzi but with reduced affinity to TcP0.
Asunto(s)
Complejos Multiproteicos/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Protozoarias/metabolismo , Proteínas Ribosómicas/metabolismo , Trypanosoma cruzi/metabolismo , Secuencia de Aminoácidos , Genes Protozoarios , Cinética , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Ribosómicas/química , Análisis de Secuencia de Proteína , Resonancia por Plasmón de Superficie , Trypanosoma cruzi/genética , Técnicas del Sistema de Dos HíbridosRESUMEN
High levels of antibodies (Abs) against the C-terminal end of the Trypanosoma cruzi ribosomal P2ß protein, defined by the R13 peptide, are detected in sera from patients with chronic Chagas heart disease (cChHD). These Abs can cross-react with the ß1-adrenergic receptor (ß1-AR), inducing a functional response in cardiomyocytes. In this study, we report that a monoclonal Ab against the R13 peptide, called mAb 17.2, and its single-chain Fv fragment (scFv), C5, caused apoptosis of murine adult cardiac HL-1 cells, and this effect was inhibited by pre-incubation with the ß-blocker, propranolol. In addition, apoptosis induced by mAb 17.2 might involve the mitochondrial pathway evidenced by an increase in pro-apoptotic molecule, Bax/anti-apoptotic molecule, Bcl(XL), mRNA levels. HL-1 cells also underwent apoptosis after incubation with nine of 23 IgGs from cChHD patients (39.1%) that presented reactivity against R13 peptide and ß1-AR. The apoptotic effect caused by these IgGs was partially abolished by pre-incubation with R13 peptide or propranolol, suggesting the involvement of the C-terminal end of ribosomal P proteins and the ß-adrenergic pathway. Moreover, we observed high rates of cardiomyocyte apoptosis in two tissue samples from cChHD patients by using a TUNEL assay and staining of active caspase-3. Our data demonstrate that Abs developed during T. cruzi infection have a strong cardiomyocyte apoptosis inducing ability, which could contribute to the heart disease developed in patients with cChHD.