Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nucleic Acids Res ; 51(18): 9716-9732, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37592734

RESUMEN

The homodimeric PolG2 accessory subunit of the mitochondrial DNA polymerase gamma (Pol γ) enhances DNA binding and processive DNA synthesis by the PolG catalytic subunit. PolG2 also directly binds DNA, although the underlying molecular basis and functional significance are unknown. Here, data from Atomic Force Microscopy (AFM) and X-ray structures of PolG2-DNA complexes define dimeric and hexameric PolG2 DNA binding modes. Targeted disruption of PolG2 DNA-binding interfaces impairs processive DNA synthesis without diminishing Pol γ subunit affinities. In addition, a structure-specific DNA-binding role for PolG2 oligomers is supported by X-ray structures and AFM showing that oligomeric PolG2 localizes to DNA crossings and targets forked DNA structures resembling the mitochondrial D-loop. Overall, data indicate that PolG2 DNA binding has both PolG-dependent and -independent functions in mitochondrial DNA replication and maintenance, which provide new insight into molecular defects associated with PolG2 disruption in mitochondrial disease.


Asunto(s)
ADN Polimerasa gamma , ADN Mitocondrial , Humanos , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Replicación del ADN/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo
2.
Methods Mol Biol ; 2615: 427-441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807807

RESUMEN

Mitochondrial DNA (mtDNA) encodes components essential for cellular respiration. Low levels of point mutations and deletions accumulate in mtDNA during normal aging. However, improper maintenance of mtDNA results in mitochondrial diseases, stemming from progressive loss of mitochondrial function through the accelerated formation of deletions and mutations in mtDNA. To better understand the molecular mechanisms underlying the creation and propagation of mtDNA deletions, we developed the LostArc next-generation DNA sequencing pipeline to detect and quantify rare mtDNA species in small tissue samples. LostArc procedures are designed to minimize PCR amplification of mtDNA and instead achieve enrichment of mtDNA by selective destruction of nuclear DNA. This approach leads to cost-effective, high-depth sequencing of mtDNA with a sensitivity sufficient to identify one mtDNA deletion per million mtDNA circles. Here, we describe detailed protocols for isolation of genomic DNA from mouse tissues, enrichment of mtDNA through enzymatic destruction of linear nuclear DNA, and preparation of libraries for unbiased next-generation sequencing of mtDNA.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Ratones , Animales , ADN Mitocondrial/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación Puntual , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Proc Natl Acad Sci U S A ; 119(32): e2207459119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914129

RESUMEN

Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized. Here, we present 3-dimensional structures of human Twinkle W315L. Employing cryo-electron microscopy (cryo-EM), we characterize the oligomeric assemblies of human full-length Twinkle W315L, define its multimeric interface, and map clinical variants associated with Twinkle in inherited mitochondrial disease. Cryo-EM, crosslinking-mass spectrometry, and molecular dynamics simulations provide insight into the dynamic movement and molecular consequences of the W315L clinical variant. Collectively, this ensemble of structures outlines a framework for studying Twinkle function in mitochondrial DNA replication and associated disease states.


Asunto(s)
Microscopía por Crioelectrón , ADN Helicasas , Enfermedades Mitocondriales , Proteínas Mitocondriales , Multimerización de Proteína , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Replicación del ADN , ADN Mitocondrial/biosíntesis , Humanos , Espectrometría de Masas , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura
4.
Methods ; 205: 263-270, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779765

RESUMEN

The mitochondrial replisome replicates the 16.6 kb mitochondria DNA (mtDNA). The proper functioning of this multicomponent protein complex is vital for the integrity of the mitochondrial genome. One of the critical protein components of the mitochondrial replisome is the Twinkle helicase, a member of the Superfamily 4 (SF4) helicases. Decades of research has uncovered common themes among SF4 helicases including self-assembly, ATP-dependent translocation, and formation of protein-protein complexes. Some of the molecular details of these processes are still unknown for the mitochondria SF4 helicase, Twinkle. Here, we describe a protocol for expression, purification, and single-particle cryo-electron microscopy of the Twinkle helicase clinical variant, W315L, which resulted in the first high-resolution structure of Twinkle helicase. The methods described here serve as an adaptable protocol to support future high-resolution studies of Twinkle helicase or other SF4 helicases.


Asunto(s)
ADN Helicasas , ADN Mitocondrial , Microscopía por Crioelectrón , ADN Helicasas/química , Replicación del ADN , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
5.
Bio Protoc ; 11(17): e4139, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34604445

RESUMEN

Understanding the structure and dynamics of DNA-protein interactions during DNA replication is crucial for elucidating the origins of disorders arising from its dysfunction. In this study, we employed Atomic Force Microscopy as a single-molecule imaging tool to examine the mitochondrial DNA helicase Twinkle and its interactions with DNA. We used imaging in air and time-lapse imaging in liquids to observe the DNA binding and unwinding activities of Twinkle hexamers at the single-molecule level. These procedures helped us visualize Twinkle loading onto and unloading from the DNA in the open-ring conformation. Using traditional methods, it has been shown that Twinkle is capable of unwinding dsDNA up to 20-55 bps. We found that the addition of mitochondrial single-stranded DNA binding protein (mtSSB) facilitates a 5-fold increase in the DNA unwinding rate for the Twinkle helicase. The protocols developed in this study provide new platforms to examine DNA replication and to explore the mechanism driving DNA deletion and human diseases. Graphic abstract: Mitochondrial Twinkle Helicase Dynamics.

6.
Genome Biol ; 21(1): 248, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943091

RESUMEN

BACKGROUND: Acquired human mitochondrial genome (mtDNA) deletions are symptoms and drivers of focal mitochondrial respiratory deficiency, a pathological hallmark of aging and late-onset mitochondrial disease. RESULTS: To decipher connections between these processes, we create LostArc, an ultrasensitive method for quantifying deletions in circular mtDNA molecules. LostArc reveals 35 million deletions (~ 470,000 unique spans) in skeletal muscle from 22 individuals with and 19 individuals without pathogenic variants in POLG. This nuclear gene encodes the catalytic subunit of replicative mitochondrial DNA polymerase γ. Ablation, the deleted mtDNA fraction, suffices to explain skeletal muscle phenotypes of aging and POLG-derived disease. Unsupervised bioinformatic analyses reveal distinct age- and disease-correlated deletion patterns. CONCLUSIONS: These patterns implicate replication by DNA polymerase γ as the deletion driver and suggest little purifying selection against mtDNA deletions by mitophagy in postmitotic muscle fibers. Observed deletion patterns are best modeled as mtDNA deletions initiated by replication fork stalling during strand displacement mtDNA synthesis.


Asunto(s)
ADN Polimerasa gamma/genética , ADN Mitocondrial/análisis , Técnicas Genéticas , Enfermedades Mitocondriales/genética , Eliminación de Secuencia , Programas Informáticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/patología , Replicación del ADN , ADN Mitocondrial/metabolismo , Células HEK293 , Humanos , Persona de Mediana Edad , Músculo Cuádriceps/química , Músculo Cuádriceps/patología , Adulto Joven
7.
J Biol Chem ; 295(17): 5564-5576, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213598

RESUMEN

Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA-binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ADN/análisis , ADN Helicasas/análisis , Humanos , Microscopía de Fuerza Atómica , Mitocondrias/metabolismo , Proteínas Mitocondriales/análisis , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 295(51): 17802-17815, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33454015

RESUMEN

Faithful replication of the mitochondrial genome is carried out by a set of key nuclear-encoded proteins. DNA polymerase γ is a core component of the mtDNA replisome and the only replicative DNA polymerase localized to mitochondria. The asynchronous mechanism of mtDNA replication predicts that the replication machinery encounters dsDNA and unique physical barriers such as structured genes, G-quadruplexes, and other obstacles. In vitro experiments here provide evidence that the polymerase γ heterotrimer is well-adapted to efficiently synthesize DNA, despite the presence of many naturally occurring roadblocks. However, we identified a specific G-quadruplex-forming sequence at the heavy-strand promoter (HSP1) that has the potential to cause significant stalling of mtDNA replication. Furthermore, this structured region of DNA corresponds to the break site for a large (3,895 bp) deletion observed in mitochondrial disease patients. The presence of this deletion in humans correlates with UV exposure, and we have found that efficiency of polymerase γ DNA synthesis is reduced after this quadruplex is exposed to UV in vitro.


Asunto(s)
ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/metabolismo , G-Cuádruplex , Biocatálisis , Replicación del ADN/efectos de la radiación , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Regiones Promotoras Genéticas , Especificidad por Sustrato , Rayos Ultravioleta
9.
PLoS One ; 14(9): e0221829, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31479473

RESUMEN

Mitochondrial DNA (mtDNA) genome integrity is essential for proper mitochondrial respiratory chain function to generate cellular energy. Nuclear genes encode several proteins that function at the mtDNA replication fork, including mitochondrial single-stranded DNA-binding protein (SSBP1), which is a tetrameric protein that binds and protects single-stranded mtDNA (ssDNA). Recently, two studies have reported pathogenic variants in SSBP1 associated with hearing loss, optic atrophy, and retinal degeneration. Here, we report a 14-year-old Chinese boy with severe and progressive mitochondrial disease manifestations across the full Pearson, Kearns-Sayre, and Leigh syndromes spectrum, including infantile anemia and bone marrow failure, growth failure, ptosis, ophthalmoplegia, ataxia, severe retinal dystrophy of the rod-cone type, sensorineural hearing loss, chronic kidney disease, multiple endocrine deficiencies, and metabolic strokes. mtDNA genome sequencing identified a single large-scale 5 kilobase mtDNA deletion (m.8629_14068del5440), present at 68% and 16% heteroplasmy in the proband's fibroblast cell line and blood, respectively, suggestive of a mtDNA maintenance defect. On trio whole exome blood sequencing, the proband was found to harbor a novel de novo heterozygous mutation c.79G>A (p.E27K) in SSBP1. Size exclusion chromatography of p.E27K SSBP1 revealed it remains a stable tetramer. However, differential scanning fluorimetry demonstrated p.E27K SSBP1 relative to wild type had modestly decreased thermostability. Functional assays also revealed p.E27K SSBP1 had altered DNA binding. Molecular modeling of SSBP1 tetramers with varying combinations of mutant subunits predicted general changes in surface accessible charges, strength of inter-subunit interactions, and protein dynamics. Overall, the observed changes in protein dynamics and DNA binding behavior suggest that p.E27K SSBP1 can interfere with DNA replication and precipitate the introduction of large-scale mtDNA deletions. Thus, a single large-scale mtDNA deletion (SLSMD) with manifestations across the clinical spectrum of Pearson, Kearns-Sayre, and Leigh syndromes may result from a nuclear gene disorder disrupting mitochondrial DNA replication.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Síndrome de Kearns-Sayre/genética , Enfermedad de Leigh/genética , Errores Innatos del Metabolismo Lipídico/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Enfermedades Musculares/genética , Mutación , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Adolescente , Secuencia de Aminoácidos , Línea Celular , Niño , Síndromes Congénitos de Insuficiencia de la Médula Ósea/complicaciones , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Heterocigoto , Humanos , Síndrome de Kearns-Sayre/complicaciones , Enfermedad de Leigh/complicaciones , Errores Innatos del Metabolismo Lipídico/complicaciones , Masculino , Enfermedades Mitocondriales/complicaciones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Enfermedades Musculares/complicaciones , Fenotipo , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Eliminación de Secuencia , Secuenciación del Exoma
10.
Nucleic Acids Res ; 46(21): 11287-11302, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30256971

RESUMEN

Improper maintenance of the mitochondrial genome progressively disrupts cellular respiration and causes severe metabolic disorders commonly termed mitochondrial diseases. Mitochondrial single-stranded DNA binding protein (mtSSB) is an essential component of the mtDNA replication machinery. We utilized single-molecule methods to examine the modes by which human mtSSB binds DNA to help define protein interactions at the mtDNA replication fork. Direct visualization of individual mtSSB molecules by atomic force microscopy (AFM) revealed a random distribution of mtSSB tetramers bound to extended regions of single-stranded DNA (ssDNA), strongly suggesting non-cooperative binding by mtSSB. Selective binding to ssDNA was confirmed by AFM imaging of individual mtSSB tetramers bound to gapped plasmid DNA substrates bearing defined single-stranded regions. Shortening of the contour length of gapped DNA upon binding mtSSB was attributed to DNA wrapping around mtSSB. Tracing the DNA path in mtSSB-ssDNA complexes with Dual-Resonance-frequency-Enhanced Electrostatic force Microscopy established a predominant binding mode with one DNA strand winding once around each mtSSB tetramer at physiological salt conditions. Single-molecule imaging suggests mtSSB may not saturate or fully protect single-stranded replication intermediates during mtDNA synthesis, leaving the mitochondrial genome vulnerable to chemical mutagenesis, deletions driven by primer relocation or other actions consistent with clinically observed deletion biases.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Microscopía de Fuerza Atómica/métodos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Imagen Individual de Molécula/métodos , ADN Mitocondrial/química , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/análisis , Polarización de Fluorescencia , Humanos , Proteínas Mitocondriales/análisis , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/genética , Electricidad Estática
11.
PLoS One ; 13(8): e0203198, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30157269

RESUMEN

Mutations in mitochondrial DNA (mtDNA) have been linked to a variety of metabolic, neurological and muscular diseases which can present at any time throughout life. MtDNA is replicated by DNA polymerase gamma (Pol γ), twinkle helicase and mitochondrial single-stranded binding protein (mtSSB). The Pol γ holoenzyme is a heterotrimer consisting of the p140 catalytic subunit and a p55 homodimeric accessory subunit encoded by the nuclear genes POLG and POLG2, respectively. The accessory subunits enhance DNA binding and promote processive DNA synthesis of the holoenzyme. Mutations in either POLG or POLG2 are linked to disease and adversely affect maintenance of the mitochondrial genome, resulting in depletion, deletions and/or point mutations in mtDNA. A homozygous mutation located at Chr17: 62492543G>A in POLG2, resulting in R182W substitution in p55, was previously identified to cause mtDNA depletion and fatal hepatic liver failure. Here we characterize this homozygous R182W p55 mutation using in vivo cultured cell models and in vitro biochemical assessments. Compared to control fibroblasts, homozygous R182W p55 primary dermal fibroblasts exhibit a two-fold slower doubling time, reduced mtDNA copy number and reduced levels of POLG and POLG2 transcripts correlating with the reported disease state. Expression of R182W p55 in HEK293 cells impairs oxidative-phosphorylation. Biochemically, R182W p55 displays DNA binding and association with p140 similar to WT p55. R182W p55 mimics the ability of WT p55 to stimulate primer extension, support steady-state nucleotide incorporation, and suppress the exonuclease function of Pol γ in vitro. However, R182W p55 has severe defects in protein stability as determined by differential scanning fluorimetry and in stimulating function as determined by thermal inactivation. These data demonstrate that the Chr17: 62492543G>A mutation in POLG2, R182W p55, severely impairs stability of the accessory subunit and is the likely cause of the disease phenotype.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación , División Celular , Respiración de la Célula , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Homocigoto , Humanos , Cinética , Unión Proteica , Estabilidad Proteica , ARN Mensajero/metabolismo , Transcripción Genética
12.
DNA Repair (Amst) ; 65: 11-19, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29522991

RESUMEN

The 16.5 kb mitochondrial genome is subjected to damage from reactive oxygen species (ROS) generated in the cell during normal cellular metabolism and external sources such as ionizing radiation and ultraviolet light. ROS cause harmful damage to DNA bases that could result in mutagenesis and various diseases, if not properly repaired. The base excision repair (BER) pathway is the primary pathway involved in maintaining the integrity of mtDNA. Several enzymes that partake in BER within the nucleus have also been identified in the mitochondria. The nei-like (NEIL) DNA glycosylases initiate BER by excising oxidized pyrimidine bases and others such as the ring-opened formamidopyrimidine and the hydantoin lesions. During BER, the NEIL enzymes interact with proteins that are involved with DNA replication and transcription. In the current manuscript, we detected NEIL1 in purified mitochondrial extracts from human cells and showed that NEIL1 interacts with the human mitochondrial single-stranded DNA binding protein (mtSSB) via its C-terminal tail using protein painting, far-western analysis, and gel-filtration chromatography. Finally, we scrutinized the NEIL1-mtSSB interaction in the presence and absence of a partial-duplex DNA substrate using a combination of multi-angle light scattering (MALS) and small-angle X-ray scattering (SAXS). The data indicate that NEIL1 and homotetrameric mtSSB form a larger ternary complex in presence of DNA, however, the tetrameric form of mtSSB gets disrupted by NEIL1 in the absence of DNA as revealed by the formation of a smaller NEIL1-mtSSBmonomer complex.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Línea Celular , ADN Mitocondrial/metabolismo , Humanos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
13.
DNA Repair (Amst) ; 60: 77-88, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29100041

RESUMEN

Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) ß. Pol ß was localized to mammalian mitochondria by electron microscopic-immunogold staining, immunofluorescence co-localization and biochemical experiments. Extracts from purified mitochondria exhibited base excision repair activity that was dependent on pol ß. Mitochondria from pol ß-deficient mouse fibroblasts had compromised DNA repair and showed elevated levels of superoxide radicals after hydrogen peroxide treatment. Mitochondria in pol ß-deficient fibroblasts displayed altered morphology by electron microscopy. These results indicate that mammalian mitochondria contain an efficient base lesion repair system mediated in part by pol ß and thus pol ß plays a role in preserving mitochondrial genome stability.


Asunto(s)
Daño del ADN , ADN Polimerasa beta/metabolismo , Reparación del ADN , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Animales , ADN Polimerasa beta/genética , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Fibroblastos/enzimología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrógeno/toxicidad , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Estrés Oxidativo/efectos de los fármacos , Superóxidos/análisis , Superóxidos/metabolismo
14.
Nucleic Acids Res ; 45(17): 10079-10088, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973450

RESUMEN

Mitochondrial aprataxin (APTX) protects the mitochondrial genome from the consequence of ligase failure by removing the abortive ligation product, i.e. the 5'-adenylate (5'-AMP) group, during DNA replication and repair. In the absence of APTX activity, blocked base excision repair (BER) intermediates containing the 5'-AMP or 5'-adenylated-deoxyribose phosphate (5'-AMP-dRP) lesions may accumulate. In the current study, we examined DNA polymerase (pol) γ and pol ß as possible complementing enzymes in the case of APTX deficiency. The activities of pol ß lyase and FEN1 nucleotide excision were able to remove the 5'-AMP-dRP group in mitochondrial extracts from APTX-/- cells. However, the lyase activity of purified pol γ was weak against the 5'-AMP-dRP block in a model BER substrate, and this activity was not able to complement APTX deficiency in mitochondrial extracts from APTX-/-Pol ß-/- cells. FEN1 also failed to provide excision of the 5'-adenylated BER intermediate in mitochondrial extracts. These results illustrate the potential role of pol ß in complementing APTX deficiency in mitochondria.


Asunto(s)
ADN Polimerasa beta/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/deficiencia , Mitocondrias/enzimología , Proteínas Nucleares/deficiencia , ADN/metabolismo , ADN Polimerasa gamma/fisiología , Endonucleasas de ADN Solapado/fisiología , Humanos , Técnicas In Vitro , Proteínas Recombinantes/metabolismo
15.
J Biol Chem ; 292(10): 4198-4209, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28154168

RESUMEN

Human mitochondrial DNA (mtDNA) polymerase γ (Pol γ) is the only polymerase known to replicate the mitochondrial genome. The Pol γ holoenzyme consists of the p140 catalytic subunit (POLG) and the p55 homodimeric accessory subunit (POLG2), which enhances binding of Pol γ to DNA and promotes processivity of the holoenzyme. Mutations within POLG impede maintenance of mtDNA and cause mitochondrial diseases. Two common POLG mutations usually found in cis in patients primarily with progressive external ophthalmoplegia generate T251I and P587L amino acid substitutions. To determine whether T251I or P587L is the primary pathogenic allele or whether both substitutions are required to cause disease, we overproduced and purified WT, T251I, P587L, and T251I + P587L double variant forms of recombinant Pol γ. Biochemical characterization of these variants revealed impaired DNA binding affinity, reduced thermostability, diminished exonuclease activity, defective catalytic activity, and compromised DNA processivity, even in the presence of the p55 accessory subunit. However, physical association with p55 was unperturbed, suggesting intersubunit affinities similar to WT. Notably, although the single mutants were similarly impaired, a dramatic synergistic effect was found for the double mutant across all parameters. In conclusion, our analyses suggest that individually both T251I and P587L substitutions functionally impair Pol γ, with greater pathogenicity predicted for the single P587L variant. Combining T251I and P587L induces extreme thermal lability and leads to synergistic nucleotide and DNA binding defects, which severely impair catalytic activity and correlate with presentation of disease in patients.


Asunto(s)
ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Mutación/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa gamma , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/química , Humanos , Cinética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Mutagénesis Sitio-Dirigida , Conformación Proteica , Homología de Secuencia de Aminoácido
16.
Methods Mol Biol ; 1351: 19-26, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26530671

RESUMEN

Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.


Asunto(s)
Reparación del ADN/genética , Replicación del ADN/genética , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Electroforesis en Gel Bidimensional/métodos , Daño del ADN/genética , ADN Polimerasa gamma , ADN Mitocondrial/biosíntesis , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción
17.
DNA Repair (Amst) ; 19: 190-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24780559

RESUMEN

Human mitochondria harbor an essential, high copy number, 16,569 base pair, circular DNA genome that encodes 13 gene products required for electron transport and oxidative phosphorylation. Mutation of this genome can compromise cellular respiration, ultimately resulting in a variety of progressive metabolic diseases collectively known as 'mitochondrial diseases'. Mutagenesis of mtDNA and the persistence of mtDNA mutations in cells and tissues is a complex topic, involving the interplay of DNA replication, DNA damage and repair, purifying selection, organelle dynamics, mitophagy, and aging. We briefly review these general elements that affect maintenance of mtDNA, and we focus on nuclear genes encoding the mtDNA replication machinery that can perturb the genetic integrity of the mitochondrial genome.


Asunto(s)
Daño del ADN/genética , Replicación del ADN/genética , Genoma Mitocondrial , Enfermedades Mitocondriales/genética , ADN Mitocondrial/genética , Humanos , Enfermedades Mitocondriales/patología , Mutagénesis , Mutación , Fosforilación Oxidativa
18.
Mitochondrion ; 12(2): 313-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22155748

RESUMEN

Human mitochondrial DNA (mtDNA) polymerase γ (pol γ) is the sole enzyme required to replicate and maintain the integrity of the mitochondrial genome. It comprises two subunits, a catalytic p140 subunit and a smaller p55 accessory subunit encoded by the POLG2 gene. We describe the molecular characterization of a potential dominant POLG2 mutation (p.R369G) in a patient with adPEO and multiple mtDNA deletions. Biochemical studies of the recombinant mutant p55 protein showed a reduced affinity to the pol γ p140 subunit, leading to impaired processivity of the holoenzyme complex but did not show sensitivity to N-ethylmalaimide (NEM) inhibition, inferring a novel disease mechanism.


Asunto(s)
ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Oftalmoplejía Externa Progresiva Crónica/genética , Multimerización de Proteína , Eliminación de Secuencia , ADN Mitocondrial/genética , Humanos , Masculino , Persona de Mediana Edad , Oftalmoplejía Externa Progresiva Crónica/patología , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
19.
Hum Mol Genet ; 20(15): 3052-66, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21555342

RESUMEN

Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Sustitución de Aminoácidos , Western Blotting , Cromatografía en Gel , ADN Polimerasa Dirigida por ADN/química , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína
20.
J Biol Chem ; 285(39): 29690-702, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20659899

RESUMEN

Missense mutations in the human C10orf2 gene, encoding the mitochondrial DNA (mtDNA) helicase, co-segregate with mitochondrial diseases such as adult-onset progressive external ophthalmoplegia, hepatocerebral syndrome with mtDNA depletion syndrome, and infantile-onset spinocerebellar ataxia. To understand the biochemical consequences of C10orf2 mutations, we overproduced wild type and 20 mutant forms of human mtDNA helicase in Escherichia coli and developed novel schemes to purify the recombinant enzymes to near homogeneity. A combination of molecular crowding, non-ionic detergents, Mg(2+) ions, and elevated ionic strength was required to combat insolubility and intrinsic instability of certain mutant variants. A systematic biochemical assessment of the enzymes included analysis of DNA binding affinity, DNA helicase activity, the kinetics of nucleotide hydrolysis, and estimates of thermal stability. In contrast to other studies, we found that all 20 mutant variants retain helicase function under optimized in vitro conditions despite partial reductions in DNA binding affinity, nucleotide hydrolysis, or thermal stability for some mutants. Such partial defects are consistent with the delayed presentation of mitochondrial diseases associated with mutation of C10orf2.


Asunto(s)
ADN Helicasas/química , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Mitocondriales/enzimología , Proteínas Mitocondriales/química , Mutación Missense , Adulto , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , ADN/química , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enfermedades Genéticas Congénitas/genética , Humanos , Hidrólisis , Cinética , Magnesio/química , Magnesio/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Unión Proteica/genética , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...