Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Dev Med Child Neurol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491729

RESUMEN

AIM: To characterize the presenting features and outcomes in children with seronegative autoimmune encephalitis, and to evaluate whether scores at nadir for the Modified Rankin Scale (mRS) and Clinical Assessment Scale for Autoimmune Encephalitis (CASE) or its paediatric-specific modification (ped-CASE) are predictive of outcomes. METHOD: This observational study included children younger than 18 years of age with seronegative autoimmune encephalitis. Demographics and clinical data were collected. The mRS and CASE/ped-CASE scores were used to evaluate disease severity. Descriptive statistics and logistic regression were used for data analysis and to evaluate associations between scale scores and outcomes. RESULTS: Sixty-three children were included (39 [62%] females, median age 7 years, interquartile range [IQR] 4 years 1 months-11 years 6 months), with follow-up available for 56 out of 63 patients (median follow-up 12.2 months, IQR 13.4-17.8). The most frequent presenting neurological manifestation was encephalopathy (81%). Median CASE/ped-CASE and mRS scores at nadir were 12.0 (IQR 7.0-17.0) and 1.0 (IQR 0-2.0) respectively. Thirty-three patients (59%) had persistent neurological deficits at follow-up. Both scoring systems suggested good functional recovery (mRS score ≤2, 95%; CASE/ped-CASE score <5, 91%). CASE/ped-CASE score was more likely than mRS to distinguish children with worse outcomes. INTERPRETATION: Children with seronegative autoimmune encephalitis are likely to have neurological deficits at follow-up. CASE/ped-CASE is more likely to distinguish children with worse outcomes than MRS.

2.
J Child Neurol ; 39(3-4): 129-134, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38544431

RESUMEN

INTRODUCTION: Little is known about the longitudinal trajectory of brain growth in children with opsoclonus-myoclonus ataxia syndrome. We performed a longitudinal evaluation of brain volumes in pediatric opsoclonus-myoclonus ataxia syndrome patients compared with age- and sex-matched healthy children. PATIENTS AND METHODS: This longitudinal case-control study included brain magnetic resonance imaging (MRI) scans from consecutive pediatric opsoclonus-myoclonus ataxia syndrome patients (2009-2020) and age- and sex-matched healthy control children. FreeSurfer analysis provided automatic volumetry of the brain. Paired t tests were performed on the curvature of growth trajectories, with Bonferroni correction. RESULTS: A total of 14 opsoclonus-myoclonus ataxia syndrome patients (12 female) and 474 healthy control children (406 female) were included. Curvature of the growth trajectories of the cerebral white and gray matter, cerebellar white and gray matter, and brainstem differed significantly between opsoclonus-myoclonus ataxia syndrome patients and healthy control children (cerebral white matter, P = .01; cerebral gray matter, P = .01; cerebellar white matter, P < .001; cerebellar gray matter, P = .049; brainstem, P < .01). DISCUSSION/CONCLUSION: We found abnormal brain maturation in the supratentorial brain, brainstem, and cerebellum in children with opsoclonus-myoclonus ataxia syndrome.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Síndrome de Opsoclonía-Mioclonía , Humanos , Femenino , Masculino , Estudios Longitudinales , Síndrome de Opsoclonía-Mioclonía/diagnóstico por imagen , Síndrome de Opsoclonía-Mioclonía/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Estudios de Casos y Controles , Preescolar , Adolescente , Tamaño de los Órganos
3.
Mult Scler Relat Disord ; 79: 104969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660456

RESUMEN

INTRODUCTION: Impairment in visual and cognitive functions occur in youth with demyelinating disorders such as multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein antibody-associated disease. Quantitative behavioral assessment using eye-tracking and pupillometry can provide functional metrics for important prognostic and clinically relevant information at the bedside. METHODS: Children and adolescents diagnosed with demyelinating disorders and healthy, age-matched controls completed an interleaved pro- and anti-saccade task using video-based eye-tracking and underwent spectral-domain optical coherence tomography examination for evaluation of retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Low-contrast visual acuity and Symbol Digit Modalities Test were performed for visual and cognitive functional assessments. We assessed saccade and pupil parameters including saccade reaction time, direction error rate, pupil response latency, peak constriction time, and peak constriction and dilation velocities. Generalized Estimating Equations were used to examine the association of eye-tracking parameters with optic neuritis history, structural metrics, and visual and cognitive scores. RESULTS: The study included 36 demyelinating disorders patients, aged 8-18 yrs. (75% F; median = 15.22 yrs., SD = 2.8) and 34 age-matched controls (65% F; median = 15.26 yrs., SD = 2.3). Surprisingly, pro- and anti-saccade performance was comparable between patients and controls, whereas pupil control was altered in patients. Oculomotor latency measures were strongly associated with the number of optic neuritis episodes, including saccade reaction time, pupil response latency, and peak constriction time. Peak constriction time was associated with both retinal nerve fiber layer and ganglion cell inner plexiform layer thickness. Pupil response latency and peak constriction time were associated with visual acuity. Pupil velocity for both constriction and dilation was associated with Symbol Digit Modalities Test scores. CONCLUSION: The strong associations between oculomotor measures with history of optic neuritis, structural, visual, and cognitive assessments in these cohorts demonstrates that quantitative eye-tracking can be useful for probing demyelinating injury of the brain and optic nerve. Future studies should evaluate their utility in discriminating between demyelinating disorders and tracking disease progression.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Neuritis Óptica , Niño , Humanos , Adolescente , Neuritis Óptica/complicaciones , Neuritis Óptica/diagnóstico por imagen , Nervio Óptico , Neuromielitis Óptica/diagnóstico , Retina , Fibras Nerviosas , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Coherencia Óptica
5.
Mult Scler ; 29(2): 212-220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36545918

RESUMEN

BACKGROUND: The presence of subclinical optic nerve (ON) injury in youth living with pediatric-onset MS has not been fully elucidated. Magnetization transfer saturation (MTsat) is an advanced magnetic resonance imaging (MRI) parameter sensitive to myelin density and microstructural integrity, which can be applied to the study of the ON. OBJECTIVE: The objective of this study was to investigate the presence of subclinical ON abnormalities in pediatric-onset MS by means of magnetization transfer saturation and evaluate their association with other structural and functional parameters of visual pathway integrity. METHODS: Eleven youth living with pediatric-onset MS (ylPOMS) and no previous history of optic neuritis and 18 controls underwent standardized brain MRI, optical coherence tomography (OCT), Magnetoencephalography (MEG)-Visual Evoked Potentials (VEPs), and visual battery. Data were analyzed with mixed effect models. RESULTS: While ON volume, OCT parameters, occipital MEG-VEPs outcomes, and visual function did not differ significantly between ylPOMS and controls, ylPOMS had lower MTsat in the supratentorial normal appearing white matter (-0.26 nU, p = 0.0023), and in both in the ON (-0.62 nU, p < 0.001) and in the normal appearing white matter of the optic radiation (-0.56 nU, p = 0.00071), with these being positively correlated (+0.57 nU, p = 0.00037). CONCLUSIONS: Subclinical microstructural injury affects the ON of ylPOMS. This may appear as MTsat changes before being detectable by other currently available testing.


Asunto(s)
Esclerosis Múltiple , Traumatismos del Nervio Óptico , Neuritis Óptica , Adolescente , Niño , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Traumatismos del Nervio Óptico/complicaciones , Potenciales Evocados Visuales , Nervio Óptico/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Coherencia Óptica/métodos
6.
Front Neurol ; 13: 928493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959404

RESUMEN

Introduction: Adult genetic leukoencephalopathies are rare neurological disorders that present unique diagnostic challenges due to their clinical and radiological overlap with more common white matter diseases, notably multiple sclerosis (MS). In this context, a strong collaborative multidisciplinary network is beneficial for shortening the diagnostic odyssey of these patients and preventing misdiagnosis. The White Matter Rounds (WM Rounds) are multidisciplinary international online meetings attended by more than 30 physicians and scientists from 15 participating sites that gather every month to discuss patients with atypical white matter disorders. We aim to present the experience of the WM Rounds Network and demonstrate the value of collaborative multidisciplinary international case discussion meetings in differentiating and preventing misdiagnoses between genetic white matter diseases and atypical MS. Methods: We retrospectively reviewed the demographic, clinical and radiological data of all the subjects presented at the WM Rounds since their creation in 2013. Results: Seventy-four patients (mean age 44.3) have been referred and discussed at the WM Rounds since 2013. Twenty-five (33.8%) of these patients were referred by an MS specialist for having an atypical presentation of MS, while in most of the remaining cases, the referring physician was a geneticist (23; 31.1%). Based on the WM Rounds recommendations, a definite diagnosis was made in 36/69 (52.2%) patients for which information was available for retrospective review. Of these diagnosed patients, 20 (55.6%) had a genetic disease, 8 (22.2%) had MS, 3 (8.3%) had both MS and a genetic disorder and 5 (13.9%) had other non-genetic conditions. Interestingly, among the patients initially referred by an MS specialist, 7/25 were definitively diagnosed with MS, 5/25 had a genetic condition (e.g., X-linked adrenoleukodystrophy and hereditary small vessel diseases like Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) and COL4A1-related disorder), and one had both MS and a genetic demyelinating neuropathy. Thanks to the WM Rounds collaborative efforts, the subjects who currently remain without a definite diagnosis, despite extensive investigations performed in the clinical setting, have been recruited in research studies aimed at identifying novel forms of genetic MS mimickers. Conclusions: The experience of the WM Rounds Network demonstrates the benefit of collective discussions on complex cases to increase the diagnostic rate and decrease misdiagnosis in patients with rare or atypical white matter diseases. Networks of this nature allow physicians and scientists to compare and share information on challenging cases from across the world, provide a basis for future multicenter research studies, and serve as model for other rare diseases.

7.
Mult Scler ; 28(14): 2253-2262, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35946086

RESUMEN

BACKGROUND: In children, multiple sclerosis (MS) is the ultimate diagnosis in only 1/5 to 1/3 of cases after a first episode of central nervous system (CNS) demyelination. As the visual pathway is frequently affected in MS and other CNS demyelinating disorders (DDs), structural retinal imaging such as optical coherence tomography (OCT) can be used to differentiate MS. OBJECTIVE: This study aimed to investigate the utility of machine learning (ML) based on OCT features to identify distinct structural retinal features in children with DDs. METHODS: This study included 512 eyes from 187 (neyes = 374) children with demyelinating diseases and 69 (neyes = 138) controls. Input features of the analysis comprised of 24 auto-segmented OCT features. RESULTS: Random Forest classifier with recursive feature elimination yielded the highest predictive values and identified DDs with 75% and MS with 80% accuracy, while multiclass distinction between MS and monophasic DD was performed with 64% accuracy. A set of eight retinal features were identified as the most important features in this classification. CONCLUSION: This study demonstrates that ML based on OCT features can be used to support a diagnosis of MS in children.


Asunto(s)
Esclerosis Múltiple , Tomografía de Coherencia Óptica , Humanos , Niño , Esclerosis Múltiple/diagnóstico por imagen , Aprendizaje Automático , Retina/diagnóstico por imagen , Vías Visuales
8.
Mult Scler ; 28(11): 1697-1709, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35581944

RESUMEN

BACKGROUND: Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is now recognized as distinct from multiple sclerosis (MS). OBJECTIVE: To evaluate the importance of considering myelin oligodendrocyte glycoprotein (MOG)-immunoglobulin-G (IgG) serology when applying MS diagnostic criteria in children. METHODS: Within a prospective cohort of children meeting MS criteria (median follow-up = 6 years, interquartile range (IQR) = 4-9), we measured MOG-IgG in serial archived serum obtained from presentation, and compared imaging and clinical features between seropositive and seronegative participants. RESULTS: Of 65 children meeting MS criteria (median age = 14.0 years, IQR = 10.9-15.1), 12 (18%) had MOG-IgG at disease onset. Seropositive participants were younger, had brain magnetic resonance imaging (MRI) features atypical for MS, rarely had cerebrospinal fluid (CSF) oligoclonal bands (2/8, 25%), and accumulated fewer T2 lesions over time. On serial samples, 5/12 (42%) were persistently seropositive, 5/12 (42%) became seronegative, and 2/12 (17%) had fluctuating results. All 12 children experienced a disease course different from typical MS. CONCLUSION: While children with MOG-IgG can have clinical, CSF, and MRI features conforming to MS criteria, the presence of MOG-IgG is associated with atypical features and predicts a non-MS disease course. Given MOG-IgG seropositivity can wane over time, testing at first attack is of considerable importance for the diagnosis of MOGAD.


Asunto(s)
Esclerosis Múltiple , Acuaporina 4 , Autoanticuerpos , Humanos , Inmunoglobulina G , Esclerosis Múltiple/diagnóstico por imagen , Glicoproteína Mielina-Oligodendrócito , Estudios Prospectivos
9.
Neuroimage Clin ; 34: 103001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35381508

RESUMEN

The impact of multiple sclerosis (MS) and myelin oligodendrocyte glycoprotein (MOG) - associated disorders (MOGAD) on brain structure in youth remains poorly understood. Reductions in cortical mantle thickness on structural MRI and abnormal diffusion-based white matter metrics (e.g., diffusion tensor parameters) have been well documented in MS but not in MOGAD. Characterizing structural abnormalities found in children with these disorders can help clarify the differences and similarities in their impact on neuroanatomy. Importantly, while MS and MOGAD affect the entire CNS, the visual pathway is of particular interest in both groups, as most patients have evidence for clinical or subclinical involvement of the anterior visual pathway. Thus, the visual pathway is of key interest in analyses of structural abnormalities in these disorders and may distinguish MOGAD from MS patients. In this study we collected MRI data on 18 MS patients, 14 MOGAD patients and 26 age- and sex-matched typically developing children (TDC). Full-brain group differences in fixel diffusion measures (fibre-bundle populations) and cortical thickness measures were tested using age and sex as covariates. Visual pathway analysis was performed by extracting mean diffusion measures within lesion free optic radiations, cortical thickness within the visual cortex, and retinal nerve fibre layer (RNFL) and ganglion cell layer thickness measures from optical coherence tomography (OCT). Fixel based analysis (FBA) revealed MS patients have widespread abnormal white matter within the corticospinal tract, inferior longitudinal fasciculus, and optic radiations, while within MOGAD patients, non-lesional impact on white matter was found primarily in the right optic radiation. Cortical thickness measures were reduced predominately in the temporal and parietal lobes in MS patients and in frontal, cingulate and visual cortices in MOGAD patients. Additionally, our findings of associations between reduced RNFLT and axonal density in MOGAD and TORT in MS patients in the optic radiations imply widespread axonal and myelin damage in the visual pathway, respectively. Overall, our approach of combining FBA, cortical thickness and OCT measures has helped evaluate similarities and differences in brain structure in MS and MOGAD patients in comparison to TDC.


Asunto(s)
Esclerosis Múltiple , Neuritis Óptica , Sustancia Blanca , Adolescente , Niño , Humanos , Esclerosis Múltiple/patología , Fibras Nerviosas/patología , Neuritis Óptica/complicaciones , Retina/patología , Tomografía de Coherencia Óptica/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
10.
Mult Scler Relat Disord ; 61: 103761, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35349885

RESUMEN

Objectives To determine to what extent acute demyelinating episodes versus chronic degenerative phenomena drive retinal neuroaxonal damage in pediatric acquired demyelinating syndromes (ADS). Methods We acquired optical coherence tomography (OCT) data (follow-up range: 2 weeks - 5 years, at variable intervals from presentation) in pediatric participants who had multiple sclerosis (MS), monophasic ADS, or were healthy. Multivariable mixed effects models were used to assess the association of the number of demyelinating episodes (either optic neuritis [ON], or non-ON relapses) with changes in retinal nerve fiber layer (RNFL) or ganglion cell layer-inner plexiform layer (GCIPL) thickness. Results 64 OCT sans from 23 MS, and 33 scans from 12 monophasic ADS participants were compared with 68 scans from 62 healthy participants. The first ON episode had the biggest impact on RNFL or GCIPL thickness in monophasic ADS (RNFL: -7.9 µm, CI=5.5, p = 0.0056; GCIPL: -8.4 µm, CI=4.4, p = 0.0002) and MS (RNFL: -16 µm, CI = 3.7, p < 10-6; GCIPL: -15 µm, CI = 2.6, p < 10-6). Non-ON relapses were also associated with small but significant retinal thickness reductions in MS (RNFL: -2.6 µm/relapse, CI = 1.4, p = 0.0003; GCIPL: -2.8 µm/relapse, CI = 0.89, p < 10-6). MS participants showed progressive GCIPL thinning independent of acute demyelinating episodes (-2.7 µm/year, CI = 1.9, p = 0.0058). Conclusions We showed a prominent impact of early ON episodes on OCT measures of neuroaxonal structure in patients with ADS. We also demonstrated negative effects of non-ON relapses, and the presence of chronic retinal neurodegenerative changes, in youth with MS.


Asunto(s)
Esclerosis Múltiple , Neuritis Óptica , Enfermedades de la Retina , Adolescente , Niño , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Fibras Nerviosas , Neuritis Óptica/complicaciones , Neuritis Óptica/diagnóstico por imagen , Recurrencia , Retina/diagnóstico por imagen , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA