Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440409

RESUMEN

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Monoterpenos/química , Estaciones del Año , Sudeste de Estados Unidos , Factores de Tiempo
2.
Environ Sci Technol ; 52(5): 3045-3053, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29406743

RESUMEN

No study has evaluated the mutagenicity of atmospheres with a calculated air quality health index (AQHI). Thus, we generated in a UV-light-containing reaction chamber two simulated atmospheres (SAs) with similar AQHIs but different proportions of criteria pollutants and evaluated them for mutagenicity in three Salmonella strains at the air-agar interface. We continuously injected into the chamber gasoline, nitric oxide, and ammonium sulfate, as well as either α-pinene to produce SA-PM, which had a high concentration of particulate matter (PM): 119 ppb ozone (O3), 321 ppb NO2, and 1007 µg/m3 PM2.5; or isoprene to produce SA-O3, which had a high ozone (O3) concentration: 415 ppb O3, 633 ppb NO2, and 55 µg/m3 PM2.5. Neither PM2.5 extracts, NO2, or O3 alone, nor nonphoto-oxidized mixtures were mutagenic or cytotoxic. Both photo-oxidized atmospheres were largely direct-acting base-substitution mutagens with similar mutagenic potencies in TA100 and TA104. The mutagenic potencies [(revertants/h)/(mgC/m3)] of SA-PM (4.3 ± 0.4) and SA-O3 (9.5 ± 1.3) in TA100 were significantly different ( P < 0.0001), but the mutation spectra were not ( P = 0.16), being ∼54% C → T and ∼46% C → A. Thus, the AQHI may have some predictive value for the mutagenicity of the gas phase of air.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Atmósfera , Pruebas de Mutagenicidad , Mutágenos , Material Particulado
3.
Environ Sci Technol ; 52(5): 3037-3044, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29381868

RESUMEN

The production of photochemical atmospheres under controlled conditions in an irradiation chamber permits the manipulation of parameters that influence the resulting air-pollutant chemistry and potential biological effects. To date, no studies have examined how contrasting atmospheres with a similar Air Quality Health Index (AQHI), but with differing ratios of criteria air pollutants, might differentially affect health end points. Here, we produced two atmospheres with similar AQHIs based on the final concentrations of ozone, nitrogen dioxide, and particulate matter (PM2.5). One simulated atmosphere (SA-PM) generated from irradiation of ∼23 ppmC gasoline, 5 ppmC α-pinene, 529 ppb NO, and 3 µg m-3 (NH4)2SO4 as a seed resulted in an average of 976 µg m-3 PM2.5, 326 ppb NO2, and 141 ppb O3 (AQHI 97.7). The other atmosphere (SA-O3) generated from 8 ppmC gasoline, 5 ppmC isoprene, 874 ppb NO, and 2 µg m-3 (NH4)2SO4 resulted in an average of 55 µg m-3 PM2.5, 643 ppb NO2, and 430 ppb O3 (AQHI of 99.8). Chemical speciation by gas chromatography showed that photo-oxidation degraded the organic precursors and promoted the de novo formation of secondary reaction products such as formaldehyde and acrolein. Further work in accompanying papers describe toxicological outcomes from the two distinct photochemical atmospheres.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Dióxido de Nitrógeno , Material Particulado
4.
Neurotoxicol Teratol ; 49: 19-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25724818

RESUMEN

The primary alternative to petroleum-based fuels is ethanol, which may be blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol and the lack of information about the neurodevelopmental toxicity of ethanol-blended fuels prompted the present work. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or vapors of gasoline containing no ethanol (E0) or gasoline blended with 15% ethanol (E15) or 85% ethanol (E85) at nominal concentrations of 3000, 6000, or 9000 ppm. Estimated maternal peak blood ethanol concentrations were less than 5mg/dL for all exposures. No overt toxicity in the dams was observed, although pregnant dams exposed to 9000 ppm of E0 or E85 gained more weight per gram of food consumed during the 12 days of exposure than did controls. Fuel vapors did not affect litter size or weight, or postnatal weight gain in the offspring. Tests of motor activity and a functional observational battery (FOB) administered to the offspring between post-natal day (PND) 27-29 and PND 56-63 revealed an increase in vertical activity counts in the 3000- and 9000-ppm groups in the E85 experiment on PND 63 and a few small changes in sensorimotor responses in the FOB that were not monotonically related to exposure concentration in any experiment. Neither cell-mediated nor humoral immunity were affected in a concentration-related manner by exposure to any of the vapors in 6-week-old male or female offspring. Systematic concentration-related differences in systolic blood pressure were not observed in rats tested at 3 and 6 months of age in any experiment. No systematic differences were observed in serum glucose or glycated hemoglobin A1c (a marker of long-term glucose homeostasis). These observations suggest a LOEL of 3000 ppm of E85 for vertical activity, LOELs of 9000 ppm of E0 and E85 for maternal food consumption, and NOELs of 9000 ppm for the other endpoints reported here. The ethanol content of the vapors did not consistently alter the pattern of behavioral, immunological, or physiological responses to the fuel vapors. The concentrations of the vapors used here exceed by 4-6 orders of magnitude typical exposure levels encountered by the public.


Asunto(s)
Conducta Animal/efectos de los fármacos , Etanol/toxicidad , Gasolina/toxicidad , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Administración por Inhalación , Animales , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Etanol/administración & dosificación , Femenino , Masculino , Actividad Motora/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/inmunología , Ratas , Ratas Long-Evans
5.
Anal Chem ; 79(7): 2641-9, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17326613

RESUMEN

Isoprene, involved in the biosynthetic pathway to cholesterol, is the prevalent hydrocarbon in breath. Breath isoprene measurement is of great interest as a measure of basal cholesterol production rate. We investigated the merits and pitfalls of isoprene measurement via its chemiluminescence (CL) reaction with ozone. For many subjects, apparent concentrations measured are higher than those obtained by a gas chromatography (GC) reference method that can be traced to ozone-induced CL with simultaneously present lower olefins and sulfur compounds. A warm column preconcentration method eliminates the lower olefins and greatly improves sensitivity while a silver-form, ion-exchange resin can remove the sulfur gases. The breath sample is captured on a miniature synthetic carbon sorbent column maintained at 55 degrees C, under which conditions ethylene, propylene, and water vapor are not significantly captured while the preconcentration process greatly improves the limit of detection for isoprene to 0.6 ppbv (S/N=3). The captured isoprene is released by heating the column to 150 degrees C. Breath samples from different subjects were collected both before and after meals and analyzed in a double-blind fashion in two laboratories, with the second laboratory performing quantitation by cryofocusing GC-flame ionization detection with parallel measurement by mass spectrometry to provide identity confirmation. For all individuals studied, the CL and the GC results agreed when both warm column preconcentration and passage through Ag+-form cation-exchange resin, which removes divalent sulfur gases, were implemented prior to CL measurement. The intensity of CL from the reaction with ozone can be much higher for some sulfur gases than for isoprene. Even though present at lower concentrations than isoprene, unless removed prior to CL measurement, for some individuals sulfur gases can cause unacceptably large (up to 500%) errors, making the sulfur gas removal step critical.


Asunto(s)
Butadienos/análisis , Hemiterpenos/análisis , Mediciones Luminiscentes/métodos , Ozono/química , Pentanos/análisis , Alquenos/química , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Etilenos/química , Cromatografía de Gases y Espectrometría de Masas/instrumentación , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Humedad , Mediciones Luminiscentes/instrumentación , Presión , Sensibilidad y Especificidad , Azufre/química , Factores de Tiempo
6.
J Air Waste Manag Assoc ; 55(5): 629-46, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15991672

RESUMEN

On-road vehicle emission rates of nonmethane hydrocarbons (NMHCs) were measured in two tunnels in Milwaukee, WI, in summer 2000 and winter 2001. Seasonal ambient temperatures in the Midwestern United States vary more widely than in locations where most studies of NMHC emissions from vehicle fleets have been conducted. Ethanol is the added fuel oxygenate in the area, and, thus, emissions measured here are of interest as other regions phase out methyl tertiary butyl ether and increase the use of ethanol. Total emissions of NMHCs in three types of tunnel tests averaged 4560 +/- 800 mg L(-1) fuel burned (average +/- standard error). To investigate the impact of cold start on vehicle emissions, samples were collected as vehicles exited a parking structure in subzero temperatures. NMHC emissions in the subzero cold-start test were 8830 +/- 190 mg L(-1) fuel-nearly double the tunnel emissions. Comparison of ambient data for the Milwaukee area with tunnel emissions showed the impact of seasonal differences in fuels and emissions on the urban atmosphere. Composition of fuel samples collected from area gas stations in both seasons was correlated with vehicle emissions; the predominant difference was increased winter emissions of lighter hydrocarbons present in winter gasoline. A chemical mass balance model was used to determine the contributions of whole gasoline and gasoline headspace vapors to vehicle emissions in the tunnel and cold-start tests, which were found to vary with season. Results of the mass balance model also indicate that partially combusted components of gasoline are a major contributor to emissions of aromatic compounds and air toxic compounds, including benzene, toluene, xylenes, napthalene, and 1,3-butadiene, whereas air toxics hexane and 2,2,4-trimethylpentane are largely attributed to gasoline and headspace vapors.


Asunto(s)
Contaminantes Atmosféricos/análisis , Hidrocarburos/análisis , Emisiones de Vehículos/análisis , Estaciones del Año , Temperatura , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...