Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732749

RESUMEN

Wounds are breaks in the continuity of the skin and underlying tissues, resulting from external causes such as cuts, blows, impacts, or surgical interventions. Countless individuals suffer minor to severe injuries, with unfortunate cases even leading to death. In today's scenario, several commercial products are available to facilitate the healing process of wounds, although chronic wounds still present more challenges than acute wounds. Nevertheless, the huge demand for wound-care products within the healthcare sector has given rise to a rapidly growing market, fostering continuous research and development endeavors for innovative wound-healing solutions. Today, there are many commercially available products including those based on natural biopolymers, stem cells, and microRNAs that promote healing from wounds. This article explores the recent breakthroughs in wound-healing products that harness the potential of natural biopolymers, stem cells, and microRNAs. A comprehensive exploration is undertaken, covering not only commercially available products but also those still in the research phase. Additionally, we provide a thorough examination of the opportunities, obstacles, and regulatory considerations influencing the potential commercialization of wound-healing products across the diverse markets of Europe, America, and Asia.

2.
J Cosmet Dermatol ; 23(6): 2117-2124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366687

RESUMEN

OBJECTIVE: Despite the demonstrated anti-melanogenic and UV protective effects of Zerumbone (ZER) in vitro, there is a lack of clinical trials that have been done to assess these properties. The primary objective of this study was to assess the effectiveness of ZER in lightening the skin tone of human participants with a single-blind approach. METHODS: Twenty-six participants were randomly assigned to two groups to investigate the application location (left or right volar forearm) for the placebo and ZER creams. Both creams were topically administered to the volar forearms twice daily over a duration of 4 weeks. Initial skin irritation was assessed before and 30 min after applying creams. The melanin and erythema levels were quantified with Mexameter MX 18. RESULTS: Twenty participants were included in the analysis. The cream formulation had excellent physical properties and was well-received by the participants. The initial skin irritation study results indicated that neither of the creams elicited an allergic reaction. The administration of ZER cream resulted in a statistically significant reduction in melanin levels (p < 0.05) after 1 week compared to the initial baseline. Furthermore, after 2 weeks of application, ZER cream demonstrated significant differences in melanin levels compared to placebo (p < 0.05). No adverse effects were observed in the group using ZER cream. CONCLUSION: ZER demonstrated significant potential as a skin-lightening agent.


Asunto(s)
Sesquiterpenos , Crema para la Piel , Preparaciones para Aclaramiento de la Piel , Pigmentación de la Piel , Humanos , Adulto , Crema para la Piel/administración & dosificación , Crema para la Piel/efectos adversos , Femenino , Método Simple Ciego , Sesquiterpenos/administración & dosificación , Sesquiterpenos/efectos adversos , Sesquiterpenos/farmacología , Adulto Joven , Masculino , Pigmentación de la Piel/efectos de los fármacos , Preparaciones para Aclaramiento de la Piel/administración & dosificación , Preparaciones para Aclaramiento de la Piel/efectos adversos , Melaninas/análisis , Administración Cutánea , Eritema/inducido químicamente , Eritema/prevención & control , Persona de Mediana Edad , Antebrazo , Piel/efectos de los fármacos
3.
Pharmaceutics ; 15(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111701

RESUMEN

Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.

4.
IEEE Rev Biomed Eng ; 16: 386-402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34905495

RESUMEN

Over the last decade, stem cell-associated therapies are widely used because of their potential in self-renewable and multipotent differentiation ability. Stem cells have become more attractive for aesthetic uses and plastic surgery, including scar reduction, breast augmentation, facial contouring, hand rejuvenation, and anti-aging. The current preclinical and clinical studies of stem cells on aesthetic uses also showed promising outcomes. Adipose-derived stem cells are commonly used for fat grafting that demonstrated scar improvement, anti-aging, skin rejuvenation properties, etc. While stem cell-based products have yet to receive approval from the FDA for aesthetic medicine and plastic surgery. Moving forward, the review on the efficacy and potential of stem cell-based therapy for aesthetic and plastic surgery is limited. In the present review, we discuss the current status and recent advances of using stem cells for aesthetic and plastic surgery. The potential of cell-free therapy and tissue engineering in this field is also highlighted. The clinical applications, advantages, and limitations are also discussed. This review also provides further works that need to be investigated to widely apply stem cells in the clinic, especially in aesthetic and plastic contexts.


Asunto(s)
Cirugía Plástica , Humanos , Tejido Adiposo/trasplante , Cicatriz , Células Madre , Estética
5.
J Vis Exp ; (184)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35816005

RESUMEN

The ultracentrifugation-based process is considered the common method for small extracellular vesicles (sEVs) isolation. However, the yield from this isolation method is relatively lower, and these methods are inefficient in separating sEV subtypes. This study demonstrates a simple benchtop filtration method to isolate human umbilical cord-derived MSC small extracellular vesicles (hUC-MSC-sEVs), successfully separated by ultrafiltration from the conditioned medium of hUC-MSCs. The size distribution, protein concentration, exosomal markers (CD9, CD81, TSG101), and morphology of the isolated hUC-MSC-sEVs were characterized with nanoparticle tracking analysis, BCA protein assay, western blot, and transmission electron microscope, respectively. The isolated hUC-MSC-sEVs' size was 30-200 nm, with a particle concentration of 7.75 × 1010 particles/mL and a protein concentration of 80 µg/mL. Positive bands for exosomal markers CD9, CD81, and TSG101 were observed. This study showed that hUC-MSC-sEVs were successfully isolated from hUC-MSCs conditioned medium, and characterization showed that the isolated product fulfilled the criteria mentioned by Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV 2018).


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Medios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ultracentrifugación , Cordón Umbilical
6.
Pharmaceutics ; 14(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336023

RESUMEN

Human umbilical cord mesenchymal stem cell-derived small extracellular vesicle (hUC-MSCs-sEVs) therapy has shown promising results to treat diabetes mellitus in preclinical studies. However, the dosage of MSCs-sEVs in animal studies, up to 10 mg/kg, was considered high and may be impractical for future clinical application. This study aims to investigate the efficacy of low-dose hUC-MSCs-sEVs treatment on human skeletal muscle cells (HSkMCs) and type 2 diabetes mellitus (T2DM) rats. Treatment with hUC-MSCs-sEVs up to 100 µg/mL for 48 h showed no significant cytotoxicity. Interestingly, 20 µg/mL of hUC-MSCs-sEVs-treated HSkMCs increased glucose uptake by 80-90% compared to untreated cells. The hUC-MSCs-sEVs treatment at 1 mg/kg improved glucose tolerance in T2DM rats and showed a protective effect on complete blood count. Moreover, an improvement in serum HbA1c was observed in diabetic rats treated with 0.5 and 1 mg/kg of hUC-MSCs-sEVs, and hUC-MSCs. The biochemical tests of hUC-MSCs-sEVs treatment groups showed no significant creatinine changes, elevated alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels compared to the normal group. Histological analysis revealed that hUC-MSCs-sEVs relieved the structural damage to the pancreas, kidney and liver. The findings suggest that hUC-MSCs-sEVs could ameliorate insulin resistance and exert protective effects on T2DM rats. Therefore, hUC-MSCs-sEVs could serve as a potential therapy for diabetes mellitus.

7.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34832875

RESUMEN

Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.

8.
Stem Cells Int ; 2021: 2616807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422061

RESUMEN

Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.

9.
Mol Biotechnol ; 63(9): 780-791, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34061307

RESUMEN

The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.


Asunto(s)
Adipocitos/citología , Fraccionamiento Químico/métodos , Condrocitos/citología , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Adipocitos/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Adhesión Celular , Diferenciación Celular , Condrocitos/metabolismo , Medios de Cultivo Condicionados/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Vesículas Extracelulares/química , Sangre Fetal/citología , Sangre Fetal/metabolismo , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Tamaño de la Partícula , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Front Pediatr ; 8: 591693, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251167

RESUMEN

Mesenchymal stromal cells (MSCs) can be derived from various tissue sources, such as the bone marrow (BMSCs), adipose tissue (ADSCs), umbilical cord (UC-MSCs) and umbilical cord blood (UCB-MSCs). Clinical trials have been conducted to investigate the potential of MSCs in ameliorating neonatal diseases, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH) and necrotizing enterocolitis (NEC). In preclinical studies, MSC therapy has been tested for the treatment of various neonatal diseases affecting the heart, eye, gut, and brain as well as sepsis. Up to date, the number of clinical trials using MSCs to treat neonatal diseases is still limited. The data reported thus far positioned MSC therapy as safe with positive outcomes. However, most of these trials are still preliminary and generally smaller in scale. Larger trials with more appropriate controls and a longer follow-up period need to be conducted to prove the safety and efficacy of the therapy more conclusively. This review discusses the current application of MSCs in treating neonatal diseases, its mechanism of action and future direction of this novel therapy, including the potential of using MSC-derived extracellular vesicles instead of the cells to treat various clinical conditions in the newborn.

11.
Cell Biosci ; 10: 112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983406

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is the damage to the spinal cord that can lead to temporary or permanent loss of function due to injury to the nerve. The SCI patients are often associated with poor quality of life. RESULTS: This review discusses the current status of mesenchymal stem cell (MSC) therapy for SCI, criteria to considering for the application of MSC therapy and novel biological therapies that can be applied together with MSCs to enhance its efficacy. Bone marrow-derived MSCs (BMSCs), umbilical cord-derived MSCs (UC-MSCs) and adipose tissue-derived MSCs (ADSCs) have been trialed for the treatment of SCI. Application of MSCs may minimize secondary injury to the spinal cord and protect the neural elements that survived the initial mechanical insult by suppressing the inflammation. Additionally, MSCs have been shown to differentiate into neuron-like cells and stimulate neural stem cell proliferation to rebuild the damaged nerve tissue. CONCLUSION: These characteristics are crucial for the restoration of spinal cord function upon SCI as damaged cord has limited regenerative capacity and it is also something that cannot be achieved by pharmacological and physiotherapy interventions. New biological therapies including stem cell secretome therapy, immunotherapy and scaffolds can be combined with MSC therapy to enhance its therapeutic effects.

12.
Int Rev Immunol ; 37(5): 266-276, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30252547

RESUMEN

Despite of ongoing research programs and numerous clinical trials, seasonal influenza epidemics remain a major concern globally. Vaccination remains the most effective method to prevent influenza infection. However, current flu vaccines have several limitations, including limited vaccine capacity, long production times, inconsistence efficacy in certain populations, and lack of a "universal" solution. Different next-generation approaches such as cell line-based culture, reverse genetics, and virus expression technology are currently under development to address the aforementioned challenges in conventional vaccine manufacture pipeline. Such approaches hope for safe and scalable production, induce broad-spectrum immunity, create premade libraries of vaccine strains, and target nonvariable regions of antigenic proteins for "universal" vaccination. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated. These developments indicate that an exciting future lies ahead in the influenza vaccine field.


Asunto(s)
Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Humanos , Inmunidad Heteróloga , Vacunación , Proteínas de la Matriz Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...