Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 16(4): 904-926, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448543

RESUMEN

Cytokine-based therapeutics have been shown to mediate objective responses in certain tumor entities but suffer from insufficient selectivity, causing limiting toxicity which prevents dose escalation to therapeutically active regimens. The antibody-based delivery of cytokines significantly increases the therapeutic index of the corresponding payload but still suffers from side effects associated with peak concentrations of the product in blood upon intravenous administration. Here we devise a general strategy (named "Intra-Cork") to mask systemic cytokine activity without impacting anti-cancer efficacy. Our technology features the use of antibody-cytokine fusions, capable of selective localization at the neoplastic site, in combination with pathway-selective inhibitors of the cytokine signaling, which rapidly clear from the body. This strategy, exemplified with a tumor-targeted IL12 in combination with a JAK2 inhibitor, allowed to abrogate cytokine-driven toxicity without affecting therapeutic activity in a preclinical model of cancer. This approach is readily applicable in clinical practice.


Asunto(s)
Citocinas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia
2.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134933

RESUMEN

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Asunto(s)
Glioblastoma , Humanos , Perfilación de la Expresión Génica , Glioblastoma/patología , Inmunoterapia , Células Asesinas Naturales , Macrófagos , Microambiente Tumoral , Análisis de la Célula Individual
3.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065131

RESUMEN

The Large Plasma Device (LAPD) at UCLA (University of California, Los Angeles) produces an 18 m long, magnetized, quiescent, and uniform plasma at a high repetition rate to enable studies of fundamental plasma physics. Here, we report on a major upgrade to the LAPD plasma source that allows for more robust operation and significant expansion of achievable plasma parameters. The original plasma source made use of a heated barium oxide (BaO) coated nickel sheet as an electron emitter. This source had a number of drawbacks, including a limited range of plasma density (≲4.0 × 1012 cm-3), a limited discharge duration (∼10 ms), and susceptibility to poisoning following oxygen exposure. The new plasma source utilizes a 38 cm diameter lanthanum hexaboride (LaB6) cathode, which has a significantly higher emissivity, allowing for a much larger discharge power density, and is robust to exposure to air. Peak plasma density of up to 3.0 × 1013 cm-33 in helium gas has been achieved. The typical operating pressure is ∼10-5 Torr, while dynamic pressure can be achieved through the gas-puffing technique. Discharges as long as 70 ms have been produced, enabling a variety of long-time-scale studies of processes, such as turbulent particle transport. The new source has been in continuous operation for 14 months, having survived air leaks, power outages that led to rapid temperature changes on the cathode and heater, and planned machine openings. We describe the design, construction, and initial operation of this novel new large-area LaB6 plasma source.

4.
STAR Protoc ; 4(4): 102700, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37925634

RESUMEN

Reproducible and efficient expansion of different immune effector cells is required for pre-clinical studies investigating adoptive cell therapies against cancer. Here, we provide a protocol for the rapid expansion of mouse T cells, natural killer (NK) cells, and bone-marrow-derived macrophages (BMDMs). We describe steps for αCD3/αCD8 plate coating, isolating splenocytes, and expanding T cells and NK cells. Further, we detail procedures for bone marrow isolation and BMDM differentiation.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Ratones , Animales , Neoplasias/terapia , Linfocitos T , Médula Ósea
5.
Sci Transl Med ; 15(697): eadf2281, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224228

RESUMEN

Glioblastoma is the most aggressive primary brain tumor with an unmet need for more effective therapies. Here, we investigated combination therapies based on L19TNF, an antibody-cytokine fusion protein based on tumor necrosis factor that selectively localizes to cancer neovasculature. Using immunocompetent orthotopic glioma mouse models, we identified strong anti-glioma activity of L19TNF in combination with the alkylating agent CCNU, which cured the majority of tumor-bearing mice, whereas monotherapies only had limited efficacy. In situ and ex vivo immunophenotypic and molecular profiling in the mouse models revealed that L19TNF and CCNU induced tumor DNA damage and treatment-associated tumor necrosis. In addition, this combination also up-regulated tumor endothelial cell adhesion molecules, promoted the infiltration of immune cells into the tumor, induced immunostimulatory pathways, and decreased immunosuppression pathways. MHC immunopeptidomics demonstrated that L19TNF and CCNU increased antigen presentation on MHC class I molecules. The antitumor activity was T cell dependent and completely abrogated in immunodeficient mouse models. On the basis of these encouraging results, we translated this treatment combination to patients with glioblastoma. The clinical translation is ongoing but already shows objective responses in three of five patients in the first recurrent glioblastoma patient cohort treated with L19TNF in combination with CCNU (NCT04573192).


Asunto(s)
Glioblastoma , Animales , Ratones , Glioblastoma/tratamiento farmacológico , Linfocitos T , Recurrencia Local de Neoplasia , Factor de Necrosis Tumoral alfa , Modelos Animales de Enfermedad , Lomustina
6.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916882

RESUMEN

Transcription factors play a determining role in lineage commitment and cell differentiation. Interferon regulatory factor 8 (IRF8) is a lineage determining transcription factor in hematopoiesis and master regulator of dendritic cells (DC), an important immune cell for immunity and tolerance. IRF8 is prominently upregulated in DC development by autoactivation and controls both DC differentiation and function. However, it is unclear how Irf8 autoactivation is controlled and eventually limited. Here, we identified a novel long non-coding RNA transcribed from the +32 kb enhancer downstream of Irf8 transcription start site and expressed specifically in mouse plasmacytoid DC (pDC), referred to as lncIrf8. The lncIrf8 locus interacts with the lrf8 promoter and shows differential epigenetic signatures in pDC versus classical DC type 1 (cDC1). Interestingly, a sequence element of the lncIrf8 promoter, but not lncIrf8 itself, is crucial for mouse pDC and cDC1 differentiation, and this sequence element confers feedback inhibition of Irf8 expression. Taken together, in DC development Irf8 autoactivation is first initiated by flanking enhancers and then second controlled by feedback inhibition through the lncIrf8 promoter element in the +32 kb enhancer. Our work reveals a previously unrecognized negative feedback loop of Irf8 that orchestrates its own expression and thereby controls DC differentiation.


Asunto(s)
ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Retroalimentación , Factores Reguladores del Interferón/metabolismo , Diferenciación Celular/fisiología , Elementos de Facilitación Genéticos , Células Dendríticas
7.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104101

RESUMEN

BACKGROUND: In this study, we describe the generation of a fully human monoclonal antibody (named '7NP2') targeting human fibroblast activation protein (FAP), an antigen expressed in the microenvironment of different types of solid neoplasms. METHODS: 7NP2 was isolated from a synthetic antibody phage display library and was improved by one round of mutagenesis-based affinity maturation. The tumor recognition properties of the antibody were validated by immunofluorescence procedures performed on cancer biopsies from human patients. A fusion protein consisting of the 7NP2 antibody linked to interleukin (IL)-12 was generated and the anticancer activity of the murine surrogate product (named mIL12-7NP2) was evaluated in mouse models. Furthermore, the safety of the fully human product (named IL12-7NP2) was evaluated in Cynomolgus monkeys. RESULTS: Biodistribution analysis in tumor-bearing mice confirmed the ability of the product to selectively localize to solid tumors while sparing healthy organs. Encouraged by these results, therapy studies were conducted in vivo, showing a potent antitumor activity in immunocompetent and immunodeficient mouse models of cancer, both as single agent and in combination with immune checkpoint inhibitors. The fully human product was tolerated when administered to non-human primates. CONCLUSIONS: The results obtained in this work provided a rationale for future clinical translation activities using IL12-7NP2.


Asunto(s)
Interleucina-12 , Neoplasias , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Humanos , Interleucina-12/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Distribución Tisular , Microambiente Tumoral
8.
Clin Cancer Res ; 28(21): 4747-4756, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36037304

RESUMEN

PURPOSE: Most chimeric antigen receptor (CAR) T-cell strategies against glioblastoma have demonstrated only modest therapeutic activity and are based on persistent gene modification strategies that have limited transgene capacity, long manufacturing processes, and the risk for uncontrollable off-tumor toxicities. mRNA-based T-cell modifications are an emerging safe, rapid, and cost-effective alternative to overcome these challenges, but are underexplored against glioblastoma. EXPERIMENTAL DESIGN: We generated mouse and human mRNA-based multifunctional T cells coexpressing a multitargeting CAR based on the natural killer group 2D (NKG2D) receptor and the proinflammatory cytokines IL12 and IFNα2 and assessed their antiglioma activity in vitro and in vivo. RESULTS: Compared with T cells that either expressed the CAR or cytokines alone, multifunctional CAR T cells demonstrated increased antiglioma activity in vitro and in vivo in three orthotopic immunocompetent mouse glioma models without signs of toxicity. Mechanistically, the coexpression of IL12 and IFNα2 in addition to the CAR promoted a proinflammatory tumor microenvironment and reduced T-cell exhaustion as demonstrated by ex vivo immune phenotyping, cytokine profiling, and RNA sequencing. The translational potential was demonstrated by image-based single-cell analyses of mRNA-modified T cells in patient glioblastoma samples with a complex cellular microenvironment. This revealed strong antiglioma activity of human mRNA-based multifunctional NKG2D CAR T cells coexpressing IL12 and IFNα2 whereas T cells that expressed either the CAR or cytokines alone did not demonstrate comparable antiglioma activity. CONCLUSIONS: These data provide a robust rationale for future clinical studies with mRNA-based multifunctional CAR T cells to treat malignant brain tumors.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/patología , Inmunoterapia Adoptiva , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , ARN Mensajero/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Citocinas , Interleucina-12 , Microambiente Tumoral/genética
9.
Clin Chem ; 68(5): 646-656, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35157041

RESUMEN

BACKGROUND: Differential leukocyte counts are usually measured based on cellular morphology or surface marker expression. It has recently been shown that leukocyte counts can also be determined by cell-type-specific DNA methylation (DNAm). Such epigenetic leukocyte counting is applicable to small blood volumes and even frozen material, but for clinical translation, the method needs to be further refined and validated. METHODS: We further optimized and validated targeted DNAm assays for leukocyte deconvolution using 332 venous and 122 capillary blood samples from healthy donors. In addition, we tested 36 samples from ring trials and venous blood from 266 patients diagnosed with different hematological diseases. Deconvolution of cell types was determined with various models using DNAm values obtained by pyrosequencing or digital droplet PCR (ddPCR). RESULTS: Relative leukocyte quantification correlated with conventional blood counts for granulocytes, lymphocytes, B cells, T cells (CD4 or CD8), natural killer cells, and monocytes with pyrosequencing (r = 0.84; r = 0.82; r = 0.58; r = 0.50; r = 0.70; r = 0.61; and r = 0.59, respectively) and ddPCR measurements (r = 0.65; r = 0.79; r = 0.56; r = 0.57; r = 0.75; r = 0.49; and r = 0.46, respectively). In some patients, particularly with hematopoietic malignancies, we observed outliers in epigenetic leukocyte counts, which could be discerned if relative proportions of leukocyte subsets did not sum up to 100%. Furthermore, absolute quantification was obtained by spiking blood samples with a reference plasmid of known copy number. CONCLUSIONS: Targeted DNAm analysis by pyrosequencing or ddPCR is a valid alternative to quantify leukocyte subsets, but some assays require further optimization.


Asunto(s)
Metilación de ADN , Epigenómica , Granulocitos , Humanos , Recuento de Leucocitos , Leucocitos
10.
Eur J Immunol ; 52(11): 1859-1862, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34826338

RESUMEN

HoxB8 multipotent progenitors (MPP) are obtained by expression of the estrogen receptor hormone binding domain (ERHBD) HoxB8 fusion gene in mouse BM cells. HoxB8 MPP generate (i) the full complement of DC subsets (cDC1, cDC2, and pDC) in vitro and in vivo and (ii) allow CRISPR/Cas9-mediated gene editing, for example, generating homozygous deletions in cis-acting DNA elements at high precision, and (iii) efficient gene repression by dCas9-KRAB for studying gene regulation in DC differentiation.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Línea Celular , Regulación de la Expresión Génica , Células Dendríticas , Proteínas de Homeodominio/genética
11.
Nat Chem Biol ; 17(9): 954-963, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33972797

RESUMEN

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Cancer Med ; 8(11): 5274-5288, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31305009

RESUMEN

t(17;19)(q21-q22;p13), responsible for TCF3-HLF fusion, is a rare translocation in childhood B-cell precursor acute lymphoblastic leukemia(BCP-ALL). t(1;19)(q23;p13), producing TCF3-PBX1 fusion, is a common translocation in childhood BCP-ALL. Prognosis of t(17;19)-ALL is extremely poor, while that of t(1;19)-ALL has recently improved dramatically in intensified chemotherapy. In this study, TCF3-HLF mRNA was detectable at a high level during induction therapy in a newly diagnosed t(17;19)-ALL case, while TCF3-PBX1 mRNA was undetectable at the end of induction therapy in most newly diagnosed t(1;19)-ALL cases. Using 4 t(17;19)-ALL and 16 t(1;19)-ALL cell lines, drug response profiling was analyzed. t(17;19)-ALL cell lines were found to be significantly more resistant to vincristine (VCR), daunorubicin (DNR), and prednisolone (Pred) than t(1;19)-ALL cell lines. Sensitivities to three (Pred, VCR, and l-asparaginase [l-Asp]), four (Pred, VCR, l-Asp, and DNR) and five (Pred, VCR, l-Asp, DNR, and cyclophosphamide) agents, widely used in induction therapy, were significantly poorer for t(17;19)-ALL cell lines than for t(1;19)-ALL cell lines. Consistent with poor responses to VCR and DNR, gene and protein expression levels of P-glycoprotein (P-gp) were higher in t(17;19)-ALL cell lines than in t(1;19)-ALL cell lines. Inhibitors for P-gp sensitized P-gp-positive t(17;19)-ALL cell lines to VCR and DNR. Knockout of P-gp by CRISPRCas9 overcame resistance to VCR and DNR in the P-gp-positive t(17;19)-ALL cell line. A combination of cyclosporine A with DNR prolonged survival of NSG mice inoculated with P-gp-positive t(17;19)-ALL cell line. These findings indicate involvement of P-gp in resistance to VCR and DNR in Pgp positive t(17;19)-ALL cell lines. In all four t(17;19)-ALL cell lines, RAS pathway mutation was detected. Furthermore, among 16 t(1;19)-ALL cell lines, multiagent resistance was usually observed in the cell lines with RAS pathway mutation in comparison to those without it, suggesting at least a partial involvement of RAS pathway mutation in multiagent resistance of t(17;19)-ALL.


Asunto(s)
Cromosomas Humanos Par 17 , Cromosomas Humanos Par 19 , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocación Genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Alelos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Inmunofenotipificación , Ratones , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
13.
Genome Biol ; 20(1): 45, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808370

RESUMEN

Transposase-Accessible Chromatin followed by sequencing (ATAC-seq) is a simple protocol for detection of open chromatin. Computational footprinting, the search for regions with depletion of cleavage events due to transcription factor binding, is poorly understood for ATAC-seq. We propose the first footprinting method considering ATAC-seq protocol artifacts. HINT-ATAC uses a position dependency model to learn the cleavage preferences of the transposase. We observe strand-specific cleavage patterns around transcription factor binding sites, which are determined by local nucleosome architecture. By incorporating all these biases, HINT-ATAC is able to significantly outperform competing methods in the prediction of transcription factor binding sites with footprints.


Asunto(s)
Huella de ADN/métodos , Genómica/métodos , Modelos Genéticos , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo , Animales , Células Dendríticas/metabolismo , Humanos , Células K562 , Ratones , Nucleosomas/química , Transposasas/metabolismo
14.
Cancer Res ; 77(18): 5118-5128, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28716895

RESUMEN

CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival. Cancer Res; 77(18); 5118-28. ©2017 AACR.


Asunto(s)
Linfocitos B/patología , Biomarcadores de Tumor/metabolismo , Antígeno CTLA-4/metabolismo , Linfoma de Células B/patología , Factor de Transcripción STAT3/metabolismo , TYK2 Quinasa/metabolismo , Adulto , Anciano , Animales , Apoptosis , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígenos CD28/metabolismo , Proliferación Celular , Femenino , Humanos , Activación de Linfocitos , Linfoma de Células B/inmunología , Linfoma de Células B/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Transducción de Señal , Linfocitos T/inmunología , Células Tumorales Cultivadas
15.
J Med Chem ; 58(16): 6589-606, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26258521

RESUMEN

The Janus kinases (JAKs) and their downstream effectors, signal transducer and activator of transcription proteins (STATs), form a critical immune cell signaling circuit, which is of fundamental importance in innate immunity, inflammation, and hematopoiesis, and dysregulation is frequently observed in immune disease and cancer. The high degree of structural conservation of the JAK ATP binding pockets has posed a considerable challenge to medicinal chemists seeking to develop highly selective inhibitors as pharmacological probes and as clinical drugs. Here we report the discovery and optimization of 2,4-substituted pyrimidines as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Investigation of structure-activity relationship (SAR) utilizing biochemical and transformed Ba/F3 cellular assays resulted in identification of potent and selective inhibitors such as compounds 9 and 45. A 2.9 Å cocrystal structure of JAK3 in complex with 9 confirms the covalent interaction. Compound 9 exhibited decent pharmacokinetic properties and is suitable for use in vivo. These inhibitors provide a set of useful tools to pharmacologically interrogate JAK3-dependent biology.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Janus Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Línea Celular Tumoral , Supervivencia Celular , Humanos , Masculino , Ratones , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacocinética , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Nature ; 511(7511): 616-20, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25043025

RESUMEN

Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fenilendiaminas/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Pirimidinas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Cisteína/metabolismo , Humanos , Células Jurkat , Fosforilación/efectos de los fármacos
17.
Nature ; 471(7336): 104-9, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21368833

RESUMEN

The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Bencenosulfonatos/farmacología , Compuestos de Bifenilo/farmacología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Niacinamida/análogos & derivados , Nitrofenoles/farmacología , Compuestos de Fenilurea , Fosforilación , Piperazinas/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Piridinas/farmacología , Sorafenib , Sulfonamidas/farmacología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
18.
Br J Haematol ; 148(6): 868-78, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19995395

RESUMEN

One characteristic of chronic lymphocytic leukaemia (CLL) lymphocytes is high expression of CD23, which has previously been identified as a downstream target for NOTCH2 signalling. The mechanisms regulating NOTCH2-dependent CD23 expression, however, are largely unknown. This study showed that peripheral CLL cells overexpressed transcriptionally active NOTCH2 (N2(IC)), irrespective of their prognostic marker profile. When placed in culture, NOTCH2 activity was spontaneously decreased in 25 out of 31 CLL cases (81%) within 24 h. DNA-bound N2(IC) complexes could be maintained by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) or by gamma-interferon (IFN-gamma), two CLL characteristic inducers of CD23 expression. Inhibition of PKC-delta by RNA interference or by rottlerin antagonised PMA-induced NOTCH2 activation and also suppressed NOTCH2 activity in CLL cases with constitutively activated NOTCH2 signalling. In 23 out of 29 CLL cases tested (79%), DNA-bound N2(IC) complexes were found to be resistant to the gamma-secretase inhibitor (GSI) DAPT, suggesting that GSIs will be only effective in a subset of CLL cases. These data suggest that deregulation of NOTCH2 signalling is critically involved in maintaining the malignant phenotype of CLL lymphocytes and point to a link between PKC-delta and NOTCH2 signalling in the leukemic cells.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/inmunología , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C-delta/metabolismo , Receptor Notch2/metabolismo , Receptores de IgE/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Humanos , Interferón gamma/inmunología , Leucemia Linfocítica Crónica de Células B/genética , Pronóstico , Proteína Quinasa C-delta/antagonistas & inhibidores , Interferencia de ARN , Receptor Notch2/genética , Transducción de Señal , Acetato de Tetradecanoilforbol/inmunología , Células Tumorales Cultivadas
19.
Br J Haematol ; 146(3): 247-56, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19466976

RESUMEN

The use of animal models has revealed important mechanisms relevant to the development and treatment of human cancer. In recent years the zebrafish has emerged as an exciting new organism in which to model leukaemogenesis. The zebrafish model has distinct advantages over other animal models, most notably a capacity for forward genetic studies and rapid small molecule screens which can be used to dissect novel genetic pathways contributing to the development of leukaemia. Additionally, the high fecundity and optical clarity of the zebrafish make it an attractive organism in which to directly visualize the localization and development of normal and abnormal haematopoiesis in vivo. Until recently, targeting mutations to specific genes was technically difficult in the zebrafish, but new technology using chimeric zinc fingers to create targeted gene knockouts has made reverse genetic modelling possible and promises to deliver many new and exciting models. This review summarizes the benefits of using the zebrafish to study leukaemogenesis, reviews current zebrafish models of specific leukaemias, and gives an overview of future direction for the zebrafish in the study of cancer.


Asunto(s)
Modelos Animales de Enfermedad , Leucemia/genética , Oncogenes/genética , Pez Cebra/genética , Animales , Predicción , Bibliotecas de Moléculas Pequeñas
20.
Biotechniques ; 39(2): 227-37, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16116796

RESUMEN

The zebrafish (Danio rerio) has proven to be a powerful vertebrate model system for the genetic analysis of developmental pathways and is only beginning to be exploited as a model for human disease and clinical research. The attributes that have led to the emergence of the zebrafish as a preeminent embryological model, including its capacity for forward and reverse genetic analyses, provides a unique opportunity to uncover novel insights into the molecular genetics of cancer. Some of the advantages of the zebrafish animal model system include fecundity, with each female capable of laying 200-300 eggs per week, external fertilization that permits manipulation of embryos ex utero, and rapid development of optically clear embryos, which allows the direct observation of developing internal organs and tissues in vivo. The zebrafish is amenable to transgenic and both forward and reverse genetic strategies that can be used to identify or generate zebrafish models of different types of cancer and may also present significant advantages for the discovery of tumor suppressor genes that promote tumorigenesis when mutationally inactivated. Importantly, the transparency and accessibility of the zebrafish embryo allows the unprecedented direct analysis of pathologic processes in vivo, including neoplastic cell transformation and tumorigenic progression. Ultimately, high-throughput modifier screens based on zebrafish cancer models can lead to the identification of chemicals or genes involved in the suppression or prevention of the malignant phenotype. The identification of small molecules or gene products through such screens will serve as ideal entry points for novel drug development for the treatment of cancer. This review focuses on the current technology that takes advantage of the zebrafish model system to further our understanding of the genetic basis of cancer and its treatment.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/embriología , Predisposición Genética a la Enfermedad/genética , Neoplasias/embriología , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...