Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 777: 146124, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33689890

RESUMEN

The small-scale spatial variability in dissolved carbon dioxide (CO2) and water-air CO2 flux dynamics were investigated within first-order catchments of the upper Blue Mountains Plateau (New South Wales, Australia). Water samples were collected at 81 locations during winter and summer over two consecutive years across seven aquatic ecosystem types: wetland, impoundment, lake, tributary stream, mainstem, escarpment complex, and urban-aquatic interface. Dissolved [CO2] ranged from 15 to 880 µM (94 to 4760%Sat), and dissolved [O2] from 0 to 350 µM (0 to 101%Sat). CO2 supersaturation was typically highest in wetlands and vegetated impoundments of the upper plateau, and decreased downstream approaching atmospheric equilibrium at the escarpment waterfalls. Gas transfer velocities ranged from 0.18 m d-1 in lentic waters to 292 m d-1 at the bottom of waterfalls due to bubble-mediated transfer. The first- and second-order streams represented only 4.8% of the total open water area yet contributed to 61% of the total water-air CO2 outgassing. The lake, escarpment and mainstem group systems had narrow diel and seasonal CO2 concentration variability, while wetlands and vegetated impoundments had the widest ranges. Our high resolution spatio-temporal sampling was essential to identifying CO2 outgassing hotspots in these geomorphically diverse catchments. Overall, >95% of excess dissolved CO2 traversing the upper Blue Mountains Plateau was outgassed to the atmosphere.

2.
Environ Pollut ; 253: 1000-1008, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31434177

RESUMEN

Intertidal wetlands can sequester pollutants along estuarine conduits. Here we test the effectiveness of a mangrove-dominated estuary in removing dissolved nitrogen during a rain event. We intensively and simultaneously sampled surface water nutrients upstream and downstream of an estuary before, during and after a 63 mm rain event in Coffs Creek (Australia). NOx was the main form of dissolved nitrogen upstream of the estuary (∼60%), while dissolved organic nitrogen (DON) was an important form at the downstream station (∼46%) during observations. High NOx attenuation (71%) occurred during the rain event when the loads reached 31 µmol m-2 catchment area day-1. In contrast, the estuary was found to be a source of NH4+ (∼5 µmol m-2 catchment area day-1). This implies a moderate conversion of upstream NOx into NH4+ and DON along the transport pathway, likely due to tidally-driven pore water exchange within the anoxic estuarine mangrove sediments. Overall, the mangrove-lined estuary attenuated upstream total dissolved nitrogen loads, maintaining water quality and minimizing exports to the coastal ocean even during high flow conditions.


Asunto(s)
Monitoreo del Ambiente , Inundaciones , Nitratos/análisis , Humedales , Australia , Estuarios , Nitrógeno/análisis , Óxidos de Nitrógeno , Lluvia , Calidad del Agua
3.
Sci Total Environ ; 618: 765-776, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29046232

RESUMEN

Temperate Highland Peat Swamps on Sandstone (THPSS) are upland wetlands, similar to fens in the Northern Hemisphere and are found at the headwaters of low-order streams on the plateaus of Eastern Australia. They are classified as endangered ecological communities under State and National legislation. Previous works have identified particular geomorphic characteristics that are important to carbon storage in these low energy sediment accumulation zones. Changes in the geomorphic structure of THPSS, such as channelisation, may have profound implications for carbon storage. To assess the effect of channelisation on carbon budgets in these ecosystems it is essential to identify and quantify differences in carbon export, emissions and stocks of carbon of intact swamps and those that have become channelised. We undertook seasonal sampling of the perched swamp aquifers and surface waters of two intact swamps and two channelised fills in the Blue Mountains of New South Wales, Australia, to investigate differences in carbon exports and emissions between the two swamp types. We found that channelised fills' mean CO2 emissions were almost four times higher than intact swamps with mean CH4 emissions up to five times higher. Annual fluvial carbon exports for channelised fills were up to 18 times that of intact swamps. Channelised fill exports and emissions can represent up to 2% of the total swamp carbon stocks per annum which is 40 times higher than the intact swamps. This work clearly demonstrates that changes in geomorphic structure brought about by incision and channelisation results in profound changes to the carbon storage function of THPSS.

4.
Sci Total Environ ; 550: 645-657, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26849329

RESUMEN

Catchment headwaters comprise the majority of all stream length globally, however, carbon (C) dynamics in these systems remains poorly understood. We combined continuous measurements of pCO2 and radon ((222)Rn, a natural groundwater tracer) with discrete sampling for particulate organic, dissolved organic and inorganic carbon (POC, DOC, and DIC) to assess the short-term carbon dynamics of a pristine subtropical headwater stream in Australia, over contrasting hydrologic regimes of drought, flash-flooding and recovery. Observations over 23days revealed a shift from carbon losses dominated by CO2 outgassing under conditions of low flow (66.4±0.4% of carbon export) to downstream exports of carbon during the flood (87.8±9.7% of carbon export). DOC was the dominant form of downstream exports throughout the study (DOC:DIC:POC=0.82:0.05:0.13). The broadest diel variability among variables occurred during the drought phase, with diel variability up to 662µatmd(-1) (or 27µM[CO2*]d(-1)), 17µMd(-1) and 268Bqm(-3)d(-1) for pCO2, dissolved oxygen and (222)Rn, respectively. Diel dynamics indicated multiple interrelated drivers of stream water chemistry including groundwater seepage and in-stream metabolism. The catchment exported terrestrial carbon throughout the field campaign, with a mean net stream flux of 4.7±7.8mmolCm(-2)(catchment area)d(-1) which is equivalent to 1.4±2.3% of the estimated local terrestrial net primary production. Our observations highlight the importance of accounting for hydrological extremes when assessing the carbon budgets and ecosystem metabolism of headwater streams, and provide a first estimate of aquatic carbon exports from a pristine Australian subtropical rainforest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...