Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Nat Aging ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834882

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.

2.
Sci Rep ; 14(1): 12436, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816422

RESUMEN

We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs. We report the ensemble model's performance as percentage variance explained (PVE) on a held-out test dataset. A non-linear baseline model improved the PVEs from 28.1 to 30.1% (SBP) and 14.3% to 17.4% (DBP) compared with a linear baseline model. Including seven PRSs in the genetic model computed based on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8 to 5.1% (SBP) and 4.7 to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting from the inclusion of additional PRSs. In summary, non-linear ML models improves BP prediction in models incorporating diverse populations.


Asunto(s)
Presión Sanguínea , Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Herencia Multifactorial , Fenotipo , Humanos , Presión Sanguínea/genética , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo/métodos , Factores de Riesgo , Masculino , Femenino , Predisposición Genética a la Enfermedad , Modelos Genéticos , Hipertensión/genética , Hipertensión/fisiopatología , Persona de Mediana Edad , Puntuación de Riesgo Genético
3.
Am J Hum Genet ; 111(6): 1035-1046, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754426

RESUMEN

Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed summary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mutation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence score (minimum: 0; max: 28). We identified 292 high-scoring genes (≥11) in 264 loci, including genes known to play a role in body weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g., FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer avenues to develop therapeutics for weight loss.


Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Obesidad , Humanos , Obesidad/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Herencia Multifactorial/genética , Sitios Genéticos , Análisis de la Aleatorización Mendeliana
4.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714703

RESUMEN

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Asunto(s)
Aberraciones Cromosómicas , Hematopoyesis Clonal , Mosaicismo , Humanos , Hematopoyesis Clonal/genética , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Janus Quinasa 2/genética , Telomerasa/genética , Telomerasa/metabolismo , Pérdida de Heterocigocidad , Estudios Transversales , Mutación , Persona de Mediana Edad , Células Madre Hematopoyéticas/metabolismo , Polimorfismo de Nucleótido Simple , Anciano
5.
medRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38699360

RESUMEN

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.

6.
Circ Genom Precis Med ; 17(3): e004320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38804128

RESUMEN

BACKGROUND: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT). METHODS: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies. RESULTS: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate SCN5A, SCN10A, and TTN/CCDC141. Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals. CONCLUSIONS: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.


Asunto(s)
Estudio de Asociación del Genoma Completo , Taquicardia Supraventricular , Humanos , Taquicardia Supraventricular/genética , Predisposición Genética a la Enfermedad , Taquicardia por Reentrada en el Nodo Atrioventricular/genética , Polimorfismo de Nucleótido Simple , Conectina/genética , Transcriptoma
7.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38571307

RESUMEN

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Asunto(s)
Proteína C-Reactiva , Metilación de ADN , Humanos , Proteína C-Reactiva/genética , Epigénesis Genética , ADN , Inflamación/genética , Estudio de Asociación del Genoma Completo , Islas de CpG , Péptidos y Proteínas de Señalización Intracelular/genética
8.
Diabetes Care ; 47(6): 1042-1047, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652672

RESUMEN

OBJECTIVE: To identify genetic risk factors for incident cardiovascular disease (CVD) among people with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We conducted a multiancestry time-to-event genome-wide association study for incident CVD among people with T2D. We also tested 204 known coronary artery disease (CAD) variants for association with incident CVD. RESULTS: Among 49,230 participants with T2D, 8,956 had incident CVD events (event rate 18.2%). We identified three novel genetic loci for incident CVD: rs147138607 (near CACNA1E/ZNF648, hazard ratio [HR] 1.23, P = 3.6 × 10-9), rs77142250 (near HS3ST1, HR 1.89, P = 9.9 × 10-9), and rs335407 (near TFB1M/NOX3, HR 1.25, P = 1.5 × 10-8). Among 204 known CAD loci, 5 were associated with incident CVD in T2D (multiple comparison-adjusted P < 0.00024, 0.05/204). A standardized polygenic score of these 204 variants was associated with incident CVD with HR 1.14 (P = 1.0 × 10-16). CONCLUSIONS: The data point to novel and known genomic regions associated with incident CVD among individuals with T2D.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Polimorfismo de Nucleótido Simple
9.
Am J Hum Genet ; 111(5): 990-995, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38636510

RESUMEN

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.


Asunto(s)
Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos , Humanos , Estudios de Cohortes , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo/métodos , Genoma Humano , Control de Calidad , Aprendizaje Automático , Secuenciación Completa del Genoma/normas , Secuenciación Completa del Genoma/métodos
10.
Nat Genet ; 56(5): 778-791, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689001

RESUMEN

Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.


Asunto(s)
Presión Sanguínea , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hipertensión , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Masculino , Presión Sanguínea/genética , Puntuación de Riesgo Genético , Hipertensión/genética , Factores de Riesgo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38635292

RESUMEN

CONTEXT: Insulin sensitivity (IS) is an important factor in type 2 diabetes (T2D) and can be estimated by many different indices. OBJECTIVE: We aimed to compare the genetic components underlying IS indices obtained from fasting and oral glucose-stimulated plasma glucose and serum insulin levels. METHODS: We computed 21 IS indices, classified as fasting, OGTT0,120 and OGTT0,30,120 indices, using fasting and oral glucose tolerance test (OGTT) data in two cohorts. We used data from a family cohort (n=313) to estimate the heritability and the genetic and phenotypic correlations of IS indices. The population cohort, Inter99 (n=5,343), was used to test for associations between IS indices and 426 genetic variants known to be associated with T2D. RESULTS: Heritability estimates of IS indices ranged between 19% and 38%. Fasting and OGTT0,30,120 indices had high genetic (ρG) and phenotypic (ρP) pairwise correlations (ρG and ρP: 0.88 to 1) The OGTT0,120 indices displayed a wide range of pairwise correlations (ρG: 0.17-1.00 and ρP: 0.13-0.97). We identified statistically significant associations between IS indices and established T2D-associated variants. The PPARG rs11709077 was associated only with fasting indices, and PIK3R rs4976033 only with OGTT0,30,120 indices. The variants in FAM63A/MINDY1, GCK, C2CD4A/B, and FTO loci were associated only with OGTT0,120 indices. CONCLUSION: Even though the IS indices mostly share a common genetic background, notable differences emerged between OGTT0,120 indices. The fasting and OGTT based indices have distinct associations with T2D risk variants. This work provides a basis for future large-scale genetic investigations into the differences between IS indices.

12.
Diabetes ; 73(6): 993-1001, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38470993

RESUMEN

African Americans (AAs) have been underrepresented in polygenic risk score (PRS) studies. Here, we integrated genome-wide data from multiple observational studies on type 2 diabetes (T2D), encompassing a total of 101,987 AAs, to train and optimize an AA-focused T2D PRS (PRSAA), using a Bayesian polygenic modeling method. We further tested the score in three independent studies with a total of 7,275 AAs and compared the PRSAA with other published scores. Results show that a 1-SD increase in the PRSAA was associated with 40-60% increase in the odds of T2D (odds ratio [OR] 1.60, 95% CI 1.37-1.88; OR 1.40, 95% CI 1.16-1.70; and OR 1.45, 95% CI 1.30-1.62) across three testing cohorts. These models captured 1.0-2.6% of the variance (R2) in T2D on the liability scale. The positive predictive values for three calculated score thresholds (the top 2%, 5%, and 10%) ranged from 14 to 35%. The PRSAA, in general, performed similarly to existing T2D PRS. The need remains for larger data sets to continue to evaluate the utility of within-ancestry scores in the AA population.


Asunto(s)
Negro o Afroamericano , Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Negro o Afroamericano/genética , Herencia Multifactorial/genética , Masculino , Femenino , Persona de Mediana Edad , Teorema de Bayes , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Adulto , Anciano
13.
Nat Med ; 30(2): 480-487, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374346

RESUMEN

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Asunto(s)
Enfermedad Crónica , Puntuación de Riesgo Genético , Salud Poblacional , Adulto , Niño , Humanos , Comunicación , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Estados Unidos
14.
Cell Genom ; 4(1): 100468, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190104

RESUMEN

Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/diagnóstico , Tasa de Filtración Glomerular/genética , Herencia Multifactorial/genética , Riñón/fisiología
15.
Obes Rev ; 25(4): e13690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38204366

RESUMEN

Obesity in children remains a major public health problem, with the current prevalence in youth ages 2-19 years estimated to be 19.7%. Despite progress in identifying risk factors, current models do not accurately predict development of obesity in early childhood. There is also substantial individual variability in response to a given intervention that is not well understood. On April 29-30, 2021, the National Institutes of Health convened a virtual workshop on "Understanding Risk and Causal Mechanisms for Developing Obesity in Infants and Young Children." The workshop brought together scientists from diverse disciplines to discuss (1) what is known regarding epidemiology and underlying biological and behavioral mechanisms for rapid weight gain and development of obesity and (2) what new approaches can improve risk prediction and gain novel insights into causes of obesity in early life. Participants identified gaps and opportunities for future research to advance understanding of risk and underlying mechanisms for development of obesity in early life. It was emphasized that future studies will require multi-disciplinary efforts across basic, behavioral, and clinical sciences. An exposome framework is needed to elucidate how behavioral, biological, and environmental risk factors interact. Use of novel statistical methods may provide greater insights into causal mechanisms.


Asunto(s)
Obesidad Infantil , Lactante , Niño , Adolescente , Estados Unidos/epidemiología , Humanos , Preescolar , Obesidad Infantil/epidemiología , Obesidad Infantil/etiología , Factores de Riesgo , Aumento de Peso , National Institutes of Health (U.S.) , Salud Pública
16.
Nat Genet ; 56(2): 222-233, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177345

RESUMEN

Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings.


Asunto(s)
Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad , Trastorno Depresivo Mayor/genética , Depresión , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple/genética
17.
Eur J Hum Genet ; 32(1): 117-124, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37474786

RESUMEN

Thinness and anorexia nervosa are both characterised by persistent low weight. Individuals with anorexia nervosa concurrently report distorted perceptions of their body and engage in weight-loss behaviours, whereas individuals with thinness often wish to gain weight. Both conditions are heritable and share genomics with BMI, but are not genetically correlated with each other. Based on their pattern of genetic associations with other traits, we explored differences between thinness and anorexia nervosa on a genomic level. In Part 1, using publicly available data, we compared genetic correlations of persistent thinness/anorexia nervosa with eleven psychiatric disorders. In Part 2, we identified individuals with adolescent persistent thinness in the Avon Longitudinal Study of Parents and Children (ALSPAC) by latent class growth analysis of measured BMI from 10 to 24 years (n = 6594) and evaluated associations with psychiatric and anthropometric polygenic scores. In Part 1, in contrast to the positive genetic correlations of anorexia nervosa with various psychiatric disorders, persistent thinness showed negative genetic correlations with attention deficit hyperactivity disorder (rgAN = 0.08 vs. rgPT = -0.30), alcohol dependence (rgAN = 0.07 vs. rgPT = -0.44), major depressive disorder (rgAN = 0.27 vs. rgPT = -0.18) and post-traumatic stress disorder (rgAN = 0.26 vs. rgPT = -0.20). In Part 2, individuals with adolescent persistent thinness in the ALSPAC had lower borderline personality disorder polygenic scores (OR = 0.77; Q = 0.01). Overall, results suggest that genetic variants associated with thinness are negatively associated with psychiatric disorders and therefore thinness may be differentiable from anorexia nervosa on a genomic level.


Asunto(s)
Anorexia Nerviosa , Trastorno Depresivo Mayor , Adolescente , Niño , Humanos , Anorexia Nerviosa/genética , Anorexia Nerviosa/psicología , Delgadez/genética , Estudios Longitudinales , Genómica
18.
Diabetologia ; 67(5): 864-873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38085289

RESUMEN

AIMS/HYPOTHESIS: Childhood overweight increases the risk of type 2 diabetes and cardiovascular disease in adulthood. However, the impact of childhood leanness on adult obesity and disease risk has been overlooked. We examined the independent and combined influences of child and adult body size on the risk of type 2 diabetes and cardiovascular disease. METHODS: Data from the UK Biobank on 364,695 individuals of European ancestry and free of type 2 diabetes and cardiovascular disease were divided into nine categories based on their self-reported body size at age 10 and measured BMI in adulthood. After a median follow-up of 12.8 years, 33,460 individuals had developed type 2 diabetes and/or cardiovascular disease. We used Cox regression models to assess the associations of body size categories with disease incidence. RESULTS: Individuals with low body size in childhood and high body size in adulthood had the highest risk of type 2 diabetes (HR 4.73; 95% CI 4.50, 4.99), compared to those with average body size in both childhood and adulthood. This was significantly higher than the risk in those with high body size in both childhood and adulthood (HR 4.05; 95% CI 3.84, 4.26). By contrast, cardiovascular disease risk was determined by adult body size, irrespective of childhood body size. CONCLUSIONS/INTERPRETATION: Low body size in childhood exacerbates the risk of type 2 diabetes associated with adult obesity but not the risk of cardiovascular disease. Thus, promoting healthy weight management from childhood to adulthood, among lean children, is crucial.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Obesidad Infantil , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Índice de Masa Corporal , Factores de Riesgo , Obesidad Infantil/complicaciones , Tamaño Corporal
20.
Int J Obes (Lond) ; 48(1): 71-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37736781

RESUMEN

BACKGROUND/OBJECTIVES: Obesity polygenic risk scores (PRS) explain substantial variation in body mass index (BMI), yet associations between PRSs and appetitive traits in children remain unclear. To better understand pathways leading to pediatric obesity, this study aimed to assess the association of obesity PRSs and appetitive traits. SUBJECTS/METHODS: This study included 248 unrelated children aged 9-12 years. DNA from the children was genotyped (236 met quality control thresholds) and four weighted polygenic risk scores from previous studies were computed and standardized: a 97 SNP PRS, 266 SNP pediatric-specific PRS, 466 SNP adult-specific PRS, and ~2 million SNP PRS. Appetitive traits were assessed using a parent-completed Child Eating Behavior Questionnaire, which evaluated food approach/avoidance traits and a composite obesogenic appetite score. BMI was directly measured and standardized by age and sex. Three associations were evaluated with linear regression: (1) appetitive traits and BMI, (2) PRSs and BMI, and (3) PRSs and appetitive traits, the primary association of interest. RESULTS: Expected positive associations were observed between obesogenic appetitive traits and BMI and all four PRSs and BMI. Examining the association between PRSs and appetitive traits, all PRSs except for the 466 SNP adult PRS were significantly associated with the obesogenic appetite score. Each standard deviation increase in the 266 SNP pediatric PRS was associated with an adjusted 2.1% increase in obesogenic appetite score (95% CI: 0.6%, 3.7%, p = 0.006). Significant partial mediation of the PRS-BMI association by obesogenic appetite score was found for these PRSs; for example, 21.3% of the association between the 266 SNP pediatric PRS and BMI was explained by the obesogenic appetite score. CONCLUSIONS: Genetic obesity risk significantly predicted appetitive traits, which partially mediated the association between genetic obesity risk and BMI in children. These findings build a clearer picture of pathways leading to pediatric obesity.


Asunto(s)
Obesidad Infantil , Adulto , Humanos , Niño , Obesidad Infantil/epidemiología , Obesidad Infantil/genética , Puntuación de Riesgo Genético , Índice de Masa Corporal , Apetito/genética , Conducta Alimentaria , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...