Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(7): e0268710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895704

RESUMEN

Counting is not always a simple exercise. Specimens can be misidentified or not detected when they are present, giving rise to unidentified sources of error. Deer pellet group counts are a common method to monitor abundance, density, and population trend. Yet, detection errors and observer bias could introduce error into sometimes very large (spatially, temporally) datasets. For example, in Scandinavia, moose (Alces alces) pellet group counts are conducted by volunteer hunters and students, but it is unknown how much uncertainty observer error introduces into these datasets. Our objectives were to 1) estimate the detection probability of moose pellet groups; 2) identify the primary variables leading to detection errors including prior observer experience; and 3) compare density estimates using single and double observer counts. We selected a subset of single observer plots from a long-term monitoring project to be conducted as dependent double observer surveys, where primary and secondary observers worked simultaneously in the field. We did this to quantify detection errors for moose pellet groups, which were previously unknown in Scandinavia, and to identify covariates which introduced variation into our estimates. Our study area was in the boreal forests of southern Norway where we had a nested grid of 100-m2 plots that we surveyed each spring. Our observers were primarily inexperienced. We found that when pellet groups were detected by the primary observer, the secondary observer saw additional pellet groups 42% of the time. We found search time was the primary covariate influencing detection. We also found density estimates from double observer counts were 1.4 times higher than single observer counts, for the same plots. This density underestimation from single observer surveys could have consequences to managers, who sometimes use pellet counts to set harvest quotas. We recommend specific steps to improve future moose pellet counts.


Asunto(s)
Ciervos , Animales , Humanos , Variaciones Dependientes del Observador , Probabilidad , Estaciones del Año , Encuestas y Cuestionarios
2.
PLoS One ; 16(3): e0247964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33657186

RESUMEN

Several species of bears are known to rub deliberately against trees and other objects, but little is known about why bears rub. Patterns in rubbing behavior of male and female brown bears (Ursus arctos) suggest that scent marking via rubbing functions to communicate among potential mates or competitors. Using DNA from bear hairs collected from rub objects in southwestern Alberta from 2011-2014 and existing DNA datasets from Montana and southeastern British Columbia, we determined sex and individual identity of each bear detected. Using these data, we completed a parentage analysis. From the parentage analysis and detection data, we determined the number of offspring, mates, unique rub objects where an individual was detected, and sampling occasions during which an individual was detected for each brown bear identified through our sampling methods. Using a Poisson regression, we found a positive relationship between bear rubbing behavior and reproductive success; both male and female bears with a greater number of mates and a greater number of offspring were detected at more rub objects and during more occasions. Our results suggest a fitness component to bear rubbing, indicate that rubbing is adaptive, and provide insight into a poorly understood behaviour.


Asunto(s)
Conducta Sexual Animal , Ursidae/fisiología , Animales , Colombia Británica , ADN/genética , Femenino , Masculino , Montana , Reproducción , Ursidae/genética
3.
Ecol Evol ; 9(1): 73-89, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680097

RESUMEN

Global biodiversity is decreasing rapidly. Parks and protected lands, while designed to conserve wildlife, often cannot provide the habitat protection needed for wide-ranging animals such as the American black bear (Ursus americanus). Conversely, private lands are often working landscapes (e.g., farming) that have high human footprints relative to protected lands. In southwestern Alberta, road densities are highest on private lands and black bears can be hunted year-round. On protected lands, road densities are lowest, and hunting is prohibited. On public lands under the jurisdiction of the provincial government (Crown lands), seasonal hunting is permitted. Population estimates are needed to calculate sustainable harvest levels and to monitor population trends. In our study area, there has never been a robust estimate of black bear density and spatial drivers of black bear density are poorly understood. We used non-invasive genetic sampling and indices of habitat productivity and human disturbance to estimate density and abundance for male and female black bears in 2013 and 2014 using two methods: spatially explicit capture-recapture (SECR) and resource-selection functions (RSF). Land tenure best explained spatial variation in black bear density. Black bear densities for females and males were highest on parkland and lowest on Crown lands. Sex ratios were female-biased on private lands, likely a result of lower harvests and movement of females out of areas with high male density. Synthesis and application: Both SECR and RSF methods clearly indicate spatial structuring of black bear density, with a strong influence based on how lands are managed. Land tenure influences the distribution of available foods and risk from humans. We emphasize the need for improved harvest reporting, particularly for non-licensed hunting on private land, to estimate the extent of black bear harvest mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA