Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(5): 2857-2864, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36700547

RESUMEN

Volatile organic compounds (VOCs) exhibit typically broad and mutually overlapping ro-vibrational absorption fingerprints. This complexity has so far limited the applicability of laser-based spectroscopy for VOC measurements in complex gas matrices. Here, we exploit a Vernier-type quantum-cascade laser (QCL) as an electrically tunable multiwavelength source for selective and sensitive VOC analysis. This emerging class of lasers provides access to several spectral windows by discrete Vernier tuning ("switching") and continuous coverage within these windows ("scanning"). We present a versatile driving technique that efficiently combines the two tuning mechanisms. Applied to our Vernier QCL, it enables the rapid acquisition (within 360 ms) of high-resolution spectra from six individual spectral windows, distributed over a wide range from 1063 to 1102 cm-1. Gaining access to the broad absorption envelopes of VOCs at multiple frequencies, along with their superimposed fine structure, which are especially pronounced at a reduced sample pressure, offers completely new opportunities in VOC analysis. The potential of this approach is assessed in a direct-laser-absorption setup with acetaldehyde, ethanol, and methanol as benchmark compounds with significant spectral overlaps. A measurement precision of 1-10 ppb is obtained after integration for 10 s at amount fractions below 10 ppm, and excellent linearity is found over at least 3 orders of magnitude. Combined with our dedicated spectral fitting algorithm, we demonstrate highly selective multicompound analyses with less than 3.5% relative expanded uncertainty, even in the presence of a 40× excess of an interfering compound with complete spectral overlap.

2.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501859

RESUMEN

Precise and accurate measurements of ambient HNO3 are crucial for understanding various atmospheric processes, but its ultra-low trace amounts and the high polarity of HNO3 have strongly hindered routine, widespread, direct measurements of HNO3 and restricted field studies to mostly short-term, localized measurement campaigns. Here, we present a custom field-deployable direct absorption laser spectrometer and demonstrate its analytical capabilities for in situ atmospheric HNO3 measurements. Detailed laboratory characterizations with a particular focus on the instrument response under representative conditions for tropospheric measurements, i.e., the humidity, spectral interference, changing HNO3 amount fractions, and air-sampling-related artifacts, revealed the key aspects of our method: (i) a good linear response (R2 > 0.98) between 0 and 25 nmol·mol−1 in both dry and humid conditions with a limit of detection of 95 pmol·mol−1; (ii) a discrepancy of 20% between the spectroscopically derived amount fractions and indirect measurements using liquid trapping and ion chromatography; (iii) a systematic spectral bias due to water vapor. The spectrometer was deployed in a three-week field measurement campaign to continuously monitor the HNO3 amount fraction in ambient air. The measured values varied between 0.1 ppb and 0.8 ppb and correlated well with the daily total nitrates measured using a filter trapping method.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Aire/análisis , Nitratos , Rayos Láser
3.
Opt Express ; 27(4): 5314-5325, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876131

RESUMEN

We report on the development and validation of a compact laser instrument using mid-IR direct absorption spectroscopy (DAS) for high-precision measurements of ethanol in breath-like air mixtures. Leveraging the intermittent continuous wave (iCW) driving for conventional narrow-band distributed feedback (DFB) quantum cascade laser (QCL) emitting around 9.3 µm and using a 25 m path length multiple-pass absorption cell at reduced pressure, a precision of 9 ppb (amount fraction, nmol mol-1) at 60 s integration time is achieved even in the presence of 5% of H2O and CO2. Thus, the instrument is well suitable for metrological studies to investigate observed, but yet unquantified, discrepancies between different breath alcohol reference-generation methods. The approach can be generalized and applied for other organic molecules in a wide range of applications.

4.
Rev Sci Instrum ; 89(6): 065107, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960583

RESUMEN

High precision mobile sensing of multi-species gases is greatly demanded in a wide range of applications. Although quantum cascade laser absorption spectroscopy demonstrates excellent field-deployment capabilities for gas sensing, the implementation of this measurement technique into sensor-like portable instrumentation still remains challenging. In this paper, two crucial elements, the laser driving and data acquisition electronics, are addressed. Therefore, we exploit the benefits of the time-division multiplexed intermittent continuous wave driving concept and the real-time signal pre-processing capabilities of a commercial System-on-Chip (SoC, Red Pitaya). We describe a re-designed current driver that offers a universal solution for operating a wide range of multi-wavelength quantum cascade laser device types and allows stacking for the purpose of multiple laser configurations. Its adaptation to the various driving situations is enabled by numerous field programmable gate array (FPGA) functionalities that were developed on the SoC, such as flexible generation of a large variety of synchronized trigger signals and digital inputs/outputs (DIOs). The same SoC is used to sample the spectroscopic signal at rates up to 125 MS/s with 14-bit resolution. Additional FPGA functionalities were implemented to enable on-board averaging of consecutive spectral scans in real-time, resulting in optimized memory bandwidth and hardware resource utilisation and autonomous system operation. Thus, we demonstrate how a cost-effective, compact, and commercial SoC can successfully be adapted to obtain a fully operational research-grade laser spectrometer. The overall system performance was examined in a spectroscopic setup by analyzing low pressure absorption features of CO2 at 4.3 µm.

5.
Opt Lett ; 42(16): 3137-3140, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28809892

RESUMEN

We present computational and experimental investigations of the beam folding properties and fringe suppression capabilities in monolithic toroidal multipass cells (MPCs) when combined with absorption masks. Coherent field simulations based on the Fresnel-Huygens theory were performed to understand the effect of multiple field truncations in such an optically semi-unstable mirror arrangement. The explicit numerical calculation of the radiation field at each reflection allows detailed optimization and performance analysis. We experimentally verified the evolving irradiance distributions and identified optimal initial field configurations. Furthermore, we suggest a proxy to estimate the noise level for specific initial conditions. These insights pave the way to a better optical performance and, thus, to even more lightweight and compact designs of this MPC type.

6.
Anal Chem ; 89(12): 6377-6383, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28514136

RESUMEN

A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm-1 at 3.38 µm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.


Asunto(s)
Rayos Láser , Compuestos Orgánicos Volátiles/análisis , Pruebas Respiratorias , Humanos , Propiedades de Superficie
7.
J Opt Soc Am A Opt Image Sci Vis ; 33(5): 913-9, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27140888

RESUMEN

Absorption cells with circular geometry are a class of multipass reflection cells consisting of a single, circular mirror. They can be particularly favorable for trace gas measurements because of their mechanical robustness, simplicity, and their optical versatility. In this article, we present detailed theoretical considerations and ray tracing simulations for the optimization of the optical design of circular multipass reflection cells. A parabolic mirror shape in a confocal arrangement is found to be most suitable for long optical paths in a small volume. We experimentally demonstrate more than 12 m optical path in a 14.5 cm diameter gas cell and NO2 concentration measurements in ambient air with a measurement precision better than 0.1 ppb.

9.
Opt Express ; 23(2): 1512-22, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25835908

RESUMEN

The concept of a multi-wavelength quantum cascade laser emitting at two or more spectrally well-separated wavelengths is highly appealing for applied spectroscopy, as it allows detecting several species with compact and cost-efficient optical setups. Here we present a practical realization of such a dual-wavelength setup, which is based on a room-temperature quantum cascade laser emitting single-mode at 1600 cm-1 and 1900 cm-1 and is thus well-suited for simultaneous NO and NO2 detection. Operated in a time-division multiplexed mode, our spectrometer reaches detection limits of 0.5 and 1.5 ppb for NO2 and NO, respectively. The performance of the system is validated against the well-established chemiluminescence detection while measuring the NOx emissions on an automotive test-bench, as well as upon monitoring the pollution at a suburban site.

10.
Analyst ; 139(9): 2039-46, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24151636

RESUMEN

In this paper we present two compact, quantum cascade laser absorption spectroscopy based, sensors developed for trace substance detection in gases and liquids. The gas sensor, in its most integrated version, represents the first system combining a quantum cascade laser and a quantum cascade detector. Furthermore, it uses a toroidal mirror cell with a volume of only 40 cm(3) for a path length of up to 4 m. The analytical performance is assessed by the measurements of isotope ratios of CO2 at ambient abundance. For the (13)CO2/(12)CO2 isotope ratio, a measurement precision of 0.2‰ is demonstrated after an integration time of 600 s. For the liquid sensor, a microfluidic system is used to extract cocaine from saliva into a solvent (PCE) transparent in the mid-infrared. This system is bonded on top of a Si/Ge waveguide and the concentration of cocaine in PCE is measured through the interaction of the evanescent part of the waveguide optical mode and the solvent flowing on top. A detection limit of <100 µg mL(-1) was achieved with this system and down to 10 µg mL(-1) with a simplified, but improved system.

11.
Appl Opt ; 52(19): 4613-9, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23842259

RESUMEN

A mid-IR optical analyzer based on a 3 µm Fabry-Perot quantum cascade laser has been developed for ultrafast detection of aerosol propellants, such as propane and butane. Given the laser emission bandwidth of 35 cm(-1), the system is spectrally well-matched to the C-H vibrational band of hydrocarbons, it is insusceptible to water interference, and stable enough to operate without wavelength scanning. Thus, it offers both high sensitivity and speed, reaching 1 ppm precision within a measurement time of 10 ms. The performance of the instrument is evaluated with an industrial demonstrator for aerosol cans leak testing, confirming that, in compliance with international directives, it can detect leaks of 1.2×10(-4) slpm at a rate of 500 cans per minute.

12.
Opt Lett ; 38(3): 257-9, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23381403

RESUMEN

A multipass cell (MPC) design for laser absorption spectroscopy is presented. The development of this new type of optical cell was driven by stringent criteria for compactness, robustness, low volume, and ease of use in optical systems. A single piece of reflective toroidal surface forms a near-concentric cavity with a volume of merely 40 cm(3). Contrary to traditional MPCs, this design allows for flexible path-length adjustments by simply changing the aiming angle of the laser beam at the entrance window. Two effective optical path lengths of 2.2 and 4.1 m were chosen to demonstrate the cell's suitability for high-precision isotope ratio measurements of CO(2) at 1% and ambient mixing ratio levels.

13.
Photochem Photobiol ; 87(1): 235-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21073472

RESUMEN

5-Aminolevulinic acid (5-ALA) is a natural precursor of protoporphyrin IX (PpIX), which can be used as a photosensitizer in photodynamic therapy (PDT). Accumulation of PpIX in benign meningioma cells has been observed previously, its exploitation for PDT, however, was discouraged by inconsistent results. To evaluate PDT for benign meningiomas, we investigated PpIX synthesis in two human meningioma cell lines (HBL-52 and BEN-MEN-1), their respective extracellular loss of PpIX and corresponding ferrochelatase (FECH) activity as well as their susceptibility to PDT. We demonstrated PpIX production after 5-ALA administration and minor loss to the extracellular space in both cell lines. However, significantly more (up to five times) PpIX was accumulated in BEN-MEN-1 as compared with HBL-52 cells. FECH activity was 2.7-fold higher in HBL-52 compared with BEN-MEN-1 cells and accordingly higher FECH levels could be shown in HBL-52 cells by Western blot analysis. BEN-MEN-1 cells were much more sensitive to PDT and cells could be almost completely killed by irradiation doses of 2 J cm(-2) , whereas HBL-52 showed only an insufficient response at this irradiation dose. We conclude that differences in intracellular PpIX concentrations between HBL-52 and BEN-MEN-1 benign meningioma cells were mainly due to differences in FECH activity and that these differences correspond to their susceptibility to 5-ALA-induced PDT.


Asunto(s)
Ácido Aminolevulínico/farmacología , Ferroquelatasa/metabolismo , Neoplasias Meníngeas/patología , Meningioma/patología , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Humanos , Neoplasias Meníngeas/enzimología , Meningioma/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA