Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853898

RESUMEN

Processivity clamps mediate polymerase switching for translesion synthesis (TLS). All three E. coli TLS polymerases interact with the ß2 processivity clamp through a conserved clamp-binding motif (CBM), which is indispensable for TLS. Notably, Pol IV also makes a unique secondary contact with the clamp through non-CBM residues. However, the role of this "rim contact" in Pol IV-mediated TLS remains poorly understood. Here we show that the rim contact is critical for TLS past strong replication blocks. In in vitro reconstituted Pol IV-mediated TLS, ablating the rim contact compromises TLS past 3-methyl dA, a strong block, while barely affecting TLS past N2-furfuryl dG, a weak block. Similar observations are also made in E. coli cells bearing a single copy of these lesions in the genome. Within lesion-stalled replication forks, the rim interaction and ssDNA binding protein cooperatively poise Pol IV to better compete with Pol III for binding to a cleft through its CBM. We propose that this bipartite clamp interaction enables Pol IV to rapidly resolve lesion-stalled replication through TLS at the fork, which reduces damage induced mutagenesis.

2.
Nat Commun ; 15(1): 1250, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341432

RESUMEN

Nonhomologous end joining (NHEJ), the primary pathway of vertebrate DNA double-strand-break (DSB) repair, directly re-ligates broken DNA ends. Damaged DSB ends that cannot be immediately re-ligated are modified by NHEJ processing enzymes, including error-prone polymerases and nucleases, to enable ligation. However, DSB ends that are initially compatible for re-ligation are typically joined without end processing. As both ligation and end processing occur in the short-range (SR) synaptic complex that closely aligns DNA ends, it remains unclear how ligation of compatible ends is prioritized over end processing. In this study, we identify structural interactions of the NHEJ-specific DNA Ligase IV (Lig4) within the SR complex that prioritize ligation and promote NHEJ fidelity. Mutational analysis demonstrates that Lig4 must bind DNA ends to form the SR complex. Furthermore, single-molecule experiments show that a single Lig4 binds both DNA ends at the instant of SR synapsis. Thus, Lig4 is poised to ligate compatible ends upon initial formation of the SR complex before error-prone processing. Our results provide a molecular basis for the fidelity of NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP)/metabolismo , Reparación del ADN , ADN Ligasas/metabolismo , ADN/genética , ADN/metabolismo
3.
DNA Repair (Amst) ; 130: 103553, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572577

RESUMEN

DNA double strand breaks (DSBs) are common lesions whose misrepair are drivers of oncogenic transformations. The non-homologous end joining (NHEJ) pathway repairs the majority of these breaks in vertebrates by directly ligating DNA ends back together. Upon formation of a DSB, a multiprotein complex is assembled on DNA ends which tethers them together within a synaptic complex. Synapsis is a critical step of the NHEJ pathway as loss of synapsis can result in mispairing of DNA ends and chromosome translocations. As DNA ends are commonly incompatible for ligation, the NHEJ machinery must also process ends to enable rejoining. This review describes how recent progress in single-molecule approaches and cryo-EM have advanced our molecular understanding of DNA end synapsis during NHEJ and how synapsis is coordinated with end processing to determine the fidelity of repair.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN , Animales , Proteínas de Unión al ADN/metabolismo , Roturas del ADN de Doble Cadena , Emparejamiento Cromosómico , Reparación del ADN
4.
Nat Commun ; 14(1): 3439, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301887

RESUMEN

The peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear. Here we use single-molecule FRET and cryo-EM to show that an essential PG synthase (RodA-PBP2) responsible for bacterial elongation undergoes dynamic exchange between closed and open states. Structural opening couples the activation of polymerization and crosslinking and is essential in vivo. Given the high conservation of this family of synthases, the opening motion that we uncovered likely represents a conserved regulatory mechanism that controls the activation of PG synthesis during other cellular processes, including cell division.


Asunto(s)
Proteínas Bacterianas , Peptidoglicano , Proteínas Bacterianas/química , Proteínas de Unión a las Penicilinas/metabolismo , Regulación Alostérica , Polisacáridos/análisis , Pared Celular/metabolismo
5.
Nat Commun ; 13(1): 7052, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396651

RESUMEN

Histone variant H2A.Z is a conserved feature of nucleosomes flanking protein-coding genes. Deposition of H2A.Z requires ATP-dependent replacement of nucleosomal H2A by a chromatin remodeler related to the multi-subunit enzyme, yeast SWR1C. How these enzymes use ATP to promote this nucleosome editing reaction remains unclear. Here we use single-molecule and ensemble methodologies to identify three ATP-dependent phases in the H2A.Z deposition reaction. Real-time analysis of single nucleosome remodeling events reveals an initial priming step that occurs after ATP addition that involves a combination of both transient DNA unwrapping from the nucleosome and histone octamer deformations. Priming is followed by rapid loss of histone H2A, which is subsequently released from the H2A.Z nucleosomal product. Surprisingly, rates of both priming and the release of the H2A/H2B dimer are sensitive to ATP concentration. This complex reaction pathway provides multiple opportunities to regulate timely and accurate deposition of H2A.Z at key genomic locations.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Nucleosomas/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(41): e2208875119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191223

RESUMEN

Translesion synthesis (TLS) polymerases bypass DNA lesions that block replicative polymerases, allowing cells to tolerate DNA damage encountered during replication. It is well known that most bacterial TLS polymerases must interact with the sliding-clamp processivity factor to carry out TLS, but recent work in Escherichia coli has revealed that single-stranded DNA-binding protein (SSB) plays a key role in enriching the TLS polymerase Pol IV at stalled replication forks in the presence of DNA damage. It remains unclear how this interaction with SSB enriches Pol IV in a stalling-dependent manner given that SSB is always present at the replication fork. In this study, we use single-molecule imaging in live E. coli cells to investigate this SSB-dependent enrichment of Pol IV. We find that Pol IV is enriched through its interaction with SSB in response to a range of different replication stresses and that changes in SSB dynamics at stalled forks may explain this conditional Pol IV enrichment. Finally, we show that other SSB-interacting proteins are likewise selectively enriched in response to replication perturbations, suggesting that this mechanism is likely a general one for enrichment of repair factors near stalled replication forks.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , ADN/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
7.
Nat Struct Mol Biol ; 29(9): 932-941, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36127468

RESUMEN

Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer-template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated. Here we show that fork-associated ssDNA-binding protein (SSB) selectively enriches the bacterial TLS polymerase Pol IV at stalled replication forks. This enrichment enables Pol IV to associate with the processivity clamp and is required for TLS on both the leading and lagging strands. In contrast, clamp-interacting proteins (CLIPs) lacking SSB binding are spatially segregated from the replication fork, minimally interfering with Pol IV-mediated TLS. We propose that stalling-dependent structural changes within clusters of fork-associated SSB establish hierarchical access to the processivity clamp. This mechanism prioritizes a subset of CLIPs with SSB-binding activity and facilitates their exchange at the replication fork.


Asunto(s)
Proteínas de Unión al ADN , Escherichia coli , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
9.
mBio ; 12(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622727

RESUMEN

Genome transfer from a virus into a cell is a critical early step in viral replication. Enveloped viruses achieve the delivery of their genomes into the cytoplasm by merging the viral membrane with the cellular membrane via a conceptually simple mechanism called membrane fusion. In contrast, genome translocation mechanisms in nonenveloped viruses, which lack viral membranes, remain poorly understood. Although cellular assays provide useful information about cell entry and genome release, it is difficult to obtain detailed mechanistic insights due both to the inherent technical difficulties associated with direct visualization of these processes and to the prevalence of nonproductive events in cellular assays performed at a very high multiplicity of infection. To overcome these issues, we developed an in vitro single-particle fluorescence assay to characterize genome release from a nonenveloped virus (poliovirus) in real time using a tethered receptor-decorated liposome system. Our results suggest that poliovirus genome release is a complex process that consists of multiple rate-limiting steps. Interestingly, we found that the addition of exogenous wild-type capsid protein VP4, but not mutant VP4, enhanced the efficiency of genome translocation. These results, together with prior structural analysis, suggest that VP4 interacts with RNA directly and forms a protective, membrane-spanning channel during genome translocation. Furthermore, our data indicate that VP4 dynamically interacts with RNA, rather than forming a static tube for RNA translocation. This study provides new insights into poliovirus genome translocation and offers a cell-free assay that can be utilized broadly to investigate genome release processes in other nonenveloped viruses.IMPORTANCE The initial transfer of genomic material from a virus into a host cell is a key step in any viral infection. Consequently, understanding how viruses deliver their genomes into cells could reveal attractive therapeutic targets. Although conventional biochemical and cellular assays have provided useful information about cell entry, the mechanism used to deliver the viral genomes across the cellular membrane into the cytoplasm is not well characterized for nonenveloped viruses such as poliovirus. In this study, we developed a fluorescence imaging assay to visualize poliovirus genome release using a synthetic vesicle system. Our results not only provide new mechanistic insights into poliovirus genome translocation but also offer a cell-free assay to bridge gaps in understanding of this process in other nonenveloped viruses.


Asunto(s)
Proteínas de la Cápside/metabolismo , Genoma Viral/fisiología , Imagen Óptica/métodos , Poliovirus/genética , Poliovirus/fisiología , ARN Viral/metabolismo , Internalización del Virus , Proteínas de la Cápside/genética , Sistemas de Computación , Células HeLa , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Liposomas/metabolismo
10.
Annu Rev Biochem ; 90: 137-164, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33556282

RESUMEN

DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , Enzimas/metabolismo , Complejos Multiproteicos/genética , Animales , Enzimas/genética , Inestabilidad Genómica , Humanos , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Recombinación V(D)J
11.
Elife ; 92020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289484

RESUMEN

Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-strand breaks in vertebrates. During NHEJ DNA ends are held together by a multi-protein synaptic complex until they are ligated. Here, we use Xenopus laevis egg extract to investigate the role of the intrinsically disordered C-terminal tail of the XRCC4-like factor (XLF), a critical factor in end synapsis. We demonstrate that the XLF tail along with the Ku-binding motif (KBM) at the extreme C-terminus are required for end joining. Although the underlying sequence of the tail can be varied, a minimal tail length is required for NHEJ. Single-molecule FRET experiments that observe end synapsis in real-time show that this defect is due to a failure to closely align DNA ends. Our data supports a model in which a single C-terminal tail tethers XLF to Ku, while allowing XLF to form interactions with XRCC4 that enable synaptic complex formation.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Cromatografía en Gel , Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Immunoblotting , Óvulo/metabolismo , Alineación de Secuencia , Proteínas de Xenopus/genética , Xenopus laevis/genética
12.
J Biol Chem ; 295(28): 9542-9550, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32430399

RESUMEN

Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with Escherichia coli thioredoxin, the product of the trxA gene. Expression of a gp5 variant in which aspartate residues in the metal-binding site of the polymerase domain were replaced by alanine is highly toxic to E. coli cells. This toxicity depends on the presence of a functional E. coli trxA allele and T7 RNA polymerase-driven expression but is independent of the exonuclease activity of gp5. In vitro, the purified gp5 variant is devoid of any detectable polymerase activity and inhibited DNA synthesis by the replisomes of E. coli and T7 in the presence of thioredoxin by forming a stable complex with DNA that prevents replication. On the other hand, the highly homologous Klenow fragment of DNA polymerase I containing an engineered gp5 thioredoxin-binding domain did not exhibit toxicity. We conclude that gp5 alleles encoding inactive polymerases, in combination with thioredoxin, could be useful as a shutoff mechanism in the design of a bacterial cell-growth system.


Asunto(s)
Bacteriófago T7 , Replicación del ADN , ADN Viral , ADN Polimerasa Dirigida por ADN , Proteínas de Escherichia coli , Escherichia coli , Tiorredoxinas , Bacteriófago T7/enzimología , Bacteriófago T7/genética , ADN Viral/biosíntesis , ADN Viral/química , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dominios Proteicos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
13.
Mol Cell ; 77(5): 1080-1091.e8, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31862156

RESUMEN

Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Inestabilidad Genómica , Animales , ADN Ligasas/genética , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Modelos Genéticos , Complejos Multiproteicos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Imagen Individual de Molécula , Factores de Tiempo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 116(51): 25591-25601, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796591

RESUMEN

DNA lesions stall the replisome and proper resolution of these obstructions is critical for genome stability. Replisomes can directly replicate past a lesion by error-prone translesion synthesis. Alternatively, replisomes can reprime DNA synthesis downstream of the lesion, creating a single-stranded DNA gap that is repaired primarily in an error-free, homology-directed manner. Here we demonstrate how structural changes within the Escherichia coli replisome determine the resolution pathway of lesion-stalled replisomes. This pathway selection is controlled by a dynamic interaction between the proofreading subunit of the replicative polymerase and the processivity clamp, which sets a kinetic barrier to restrict access of translesion synthesis (TLS) polymerases to the primer/template junction. Failure of TLS polymerases to overcome this barrier leads to repriming, which competes kinetically with TLS. Our results demonstrate that independent of its exonuclease activity, the proofreading subunit of the replisome acts as a gatekeeper and influences replication fidelity during the resolution of lesion-stalled replisomes.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN Bacteriano , ADN Polimerasa Dirigida por ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
16.
Mol Cell ; 75(4): 700-710.e6, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442422

RESUMEN

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , ADN de Helmintos/química , Proteínas Nucleares/química , Conformación de Ácido Nucleico , Nucleosomas/química , Multimerización de Proteína , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , ADN de Helmintos/metabolismo , Nucleosomas/metabolismo , Nucleosomas/ultraestructura
17.
Biophys J ; 116(12): 2367-2377, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31113551

RESUMEN

A one-dimensional (1D) search is an essential step in DNA target recognition. Theoretical studies have suggested that the sequence dependence of 1D diffusion can help resolve the competing demands of a fast search and high target affinity, a conflict known as the speed-selectivity paradox. The resolution requires that the diffusion energy landscape is correlated with the underlying specific binding energies. In this work, we report observations of a 1D search by quantum dot-labeled EcoRI. Our data supports the view that proteins search DNA via rotation-coupled sliding over a corrugated energy landscape. We observed that whereas EcoRI primarily slides along DNA at low salt concentrations, at higher concentrations, its diffusion is a combination of sliding and hopping. We also observed long-lived pauses at genomic star sites, which differ by a single nucleotide from the target sequence. To reconcile these observations with prior biochemical and structural data, we propose a model of search in which the protein slides over a sequence-independent energy landscape during fast search but rapidly interconverts with a "hemispecific" binding mode in which a half site is probed. This half site interaction stabilizes the transition to a fully specific mode of binding, which can then lead to target recognition.


Asunto(s)
Desoxirribonucleasa EcoRI/química , Desoxirribonucleasa EcoRI/metabolismo , Secuencia de Bases , Sitios de Unión , ADN/genética , ADN/metabolismo , Difusión , Unión Proteica
18.
Biochemistry ; 58(20): 2509-2518, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30946563

RESUMEN

Regulated proteolysis of signaling proteins under mechanical tension enables cells to communicate with their environment in a variety of developmental and physiologic contexts. The role of force in inducing proteolytic sensitivity has been explored using magnetic tweezers at the single-molecule level with bead-tethered assays, but such efforts have been limited by challenges in ensuring that beads not be restrained by multiple tethers. Here, we describe a multiplexed assay for single-molecule proteolysis that overcomes the multiple-tether problem using a flow-extension strategy on a microscope equipped with magnetic tweezers. Particle tracking and computational sorting of flow-induced displacements allow assignment of tethered substrates to singly captured and multiply tethered bins, with the fraction of fully mobile, single-tether substrates depending inversely on the concentration of substrate loaded on the coverslip. Computational exclusion of multiple-tether beads enables robust assessment of on-target proteolysis by the highly specific tobacco etch virus protease and the more promiscuous metalloprotease ADAM17. This method should be generally applicable to a wide range of proteases and readily extensible to robust evaluation of proteolytic sensitivity as a function of applied magnetic force.


Asunto(s)
Proteína ADAM17/química , Endopeptidasas/química , Péptidos/análisis , Proteolisis , Imagen Individual de Molécula/métodos , ADN/química , Humanos , Fenómenos Magnéticos , Microfluídica/métodos , Movimiento (Física) , Péptidos/química , Potyvirus/enzimología , Prueba de Estudio Conceptual
19.
EMBO J ; 38(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30877095

RESUMEN

SecA belongs to the large class of ATPases that use the energy of ATP hydrolysis to perform mechanical work resulting in protein translocation across membranes, protein degradation, and unfolding. SecA translocates polypeptides through the SecY membrane channel during protein secretion in bacteria, but how it achieves directed peptide movement is unclear. Here, we use single-molecule FRET to derive a model that couples ATP hydrolysis-dependent conformational changes of SecA with protein translocation. Upon ATP binding, the two-helix finger of SecA moves toward the SecY channel, pushing a segment of the polypeptide into the channel. The finger retracts during ATP hydrolysis, while the clamp domain of SecA tightens around the polypeptide, preserving progress of translocation. The clamp opens after phosphate release and allows passive sliding of the polypeptide chain through the SecA-SecY complex until the next ATP binding event. This power-stroke mechanism may be used by other ATPases that move polypeptides.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Péptidos/metabolismo , Proteína SecA/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Proteína SecA/química
20.
Microb Cell ; 6(1): 65-101, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30652106

RESUMEN

Genomes are constantly in flux, undergoing changes due to recombination, repair and mutagenesis. In vivo, many of such changes are studies using reporters for specific types of changes, or through cytological studies that detect changes at the single-cell level. Single molecule assays, which are reviewed here, can detect transient intermediates and dynamics of events. Biochemical assays allow detailed investigation of the DNA and protein activities of each step in a repair, recombination or mutagenesis event. Each type of assay is a powerful tool but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...