Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 113(12): 2187-2196, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37287124

RESUMEN

Pantoea vagans C9-1 (C9-1) is a biological control bacterium that is applied to apple and pear trees during bloom for suppression of fire blight, caused by Erwinia amylovora. Strain C9-1 has three megaplasmids: pPag1, pPag2, and pPag3. Prior bioinformatic studies predicted these megaplasmids have a role in environmental fitness and/or biocontrol efficacy. Plasmid pPag3 is part of the large Pantoea plasmid (LPP-1) group that is present in all Pantoea spp. and has been hypothesized to contribute to environmental colonization and persistence, while pPag2 is less common. We assessed fitness of C9-1 derivatives cured of pPag2 and/or pPag3 on pear and apple flowers and fruit in experimental orchards. We also assessed the ability of a C9-1 derivative lacking pPag3 to reduce populations of E. amylovora on flowers and disease incidence. Previously, we determined that tolerance to stresses imposed in vitro was compromised in derivatives of C9-1 lacking pPag2 and/or pPag3; however, in this study, the loss of pPag2 and/or pPag3 did not consistently reduce the fitness of C9-1 on flowers in orchards. Over the summer, pPag3 contributed to survival of C9-1 on developing apple and pear fruit in two of five trials, whereas loss of pPag2 did not significantly affect survival of C9-1. We also found that loss of pPag3 did not affect C9-1's ability to reduce E. amylovora populations or fire blight incidence on apple flowers. Our findings partially support prior hypotheses that LPP-1 in Pantoea species contributes to persistence on plant surfaces but questions whether LPP-1 facilitates host colonization.


Asunto(s)
Erwinia amylovora , Malus , Pantoea , Pyrus , Malus/microbiología , Frutas , Pantoea/genética , Pyrus/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Plásmidos , Erwinia amylovora/genética , Flores/microbiología
2.
ACS Chem Biol ; 17(6): 1351-1356, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35675261

RESUMEN

The bacterial modular type I polyketide synthases (PKSs) typically furnish nonaromatic lactone and lactam natural products. Here, by the complete in vitro enzymatic production of the polyketide antibiotic pyoluteorin, we describe the biosynthetic mechanism for the construction of an aromatic resorcylic ring by a type I PKS. We find that the pyoluteorin type I PKS does not produce an aromatic product, rather furnishing an alicyclic dihydrophloroglucinol that is later enzymatically dehydrated and aromatized. The aromatizing dehydratase is encoded in the pyoluteorin biosynthetic gene cluster (BGC), and its presence is conserved in other BGCs encoding production of pyrrolic polyketides. Sequence similarity and mutational analysis demonstrates that the overall structure and position of the active site for the aromatizing dehydratase is shared with flavin-dependent halogenases albeit with a loss in ability to perform redox catalysis. We demonstrate that the post-PKS dehydrative aromatization is critical for the antibiotic activity of pyoluteorin.


Asunto(s)
Sintasas Poliquetidas , Policétidos , Antibacterianos , Hidroliasas/genética , Familia de Multigenes , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética
3.
J Nat Prod ; 85(1): 105-114, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35044192

RESUMEN

Alkyne-containing natural products have been identified from plants, insects, algae, fungi, and bacteria. This class of natural products has been characterized as having a variety of biological activities. Polyynes are a subclass of acetylenic natural products that contain conjugated alkynes and are underrepresented in natural product databases due to the fact that they decompose during purification. Here we report a workflow that utilizes alkyne azide cycloaddition (AAC) reactions followed by LC-MS/MS analysis to identify acetylenic natural products. In this report, we demonstrate that alkyne azide cycloaddition reactions with p-bromobenzyl azide result in p-bromobenzyl-substituted triazole products that fragment to a common brominated tropylium ion. We were able to identify a synthetic alkyne spiked into the extract of Anabaena sp. PCC 7120 at a concentration of 10 µg/mL after optimization of MS/MS conditions. We then successfully identified the known natural product fischerellin A in the extract of Fischerella muscicola PCC 9339. Lastly, we identified the recently identified natural products protegenins A and C from Pseudomonas protegens Pf-5 through a combination of genome mining and RuAAC reactions. This is the first report of RuAAC reactions to detect acetylenic natural products. We also compare CuAAC and RuAAC reactions and find that CuAAC reactions produce fewer byproducts compared to RuAAC but is limited to terminal-alkyne-containing compounds. In contrast, RuAAC is capable of identification of both terminal and internal acetylenic natural products, but byproducts need to be eliminated from analysis by creation of an exclusion list. We believe that both CuAAC and RuAAC reactions coupled to LC-MS/MS represent a method for the untargeted identification of acetylenic natural products, but each method has strengths and weaknesses.


Asunto(s)
Alquinos/química , Productos Biológicos/química , Cromatografía Liquida/métodos , Reacción de Cicloadición , Rutenio/química , Espectrometría de Masas en Tándem/métodos , Catálisis
4.
Environ Microbiol ; 23(9): 5525-5540, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34347373

RESUMEN

The unicellular alga Chlamydomonas reinhardtii and the bacterium Pseudomonas protegens serve as a model to study the interactions between photosynthetic and heterotrophic microorganisms. P. protegens secretes the cyclic lipopeptide orfamide A that interferes with cytosolic Ca2+ homeostasis in C. reinhardtii resulting in deflagellation of the algal cells. Here, we studied the roles of additional secondary metabolites secreted by P. protegens using individual compounds and co-cultivation of algae with bacterial mutants. Rhizoxin S2, pyrrolnitrin, pyoluteorin, 2,4-diacetylphloroglucinol (DAPG) and orfamide A all induce changes in cell morphology and inhibit the growth of C. reinhardtii. Rhizoxin S2 exerts the strongest growth inhibition, and its action depends on the spatial structure of the environment (agar versus liquid culture). Algal motility is unaffected by rhizoxin S2 and is most potently inhibited by orfamide A (IC50  = 4.1 µM). Pyrrolnitrin and pyoluteorin both interfere with algal cytosolic Ca2+ homeostasis and motility whereas high concentrations of DAPG immobilize C. reinhardtii without deflagellation or disturbance of Ca2+ homeostasis. Co-cultivation with a regulatory mutant of bacterial secondary metabolism (ΔgacA) promotes algal growth under spatially structured conditions. Our results reveal how a single soil bacterium uses an arsenal of secreted antialgal compounds with complementary and partially overlapping activities.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Pseudomonas , Metabolismo Secundario
5.
Microorganisms ; 9(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34361923

RESUMEN

Antibiotic biosynthesis by microorganisms is commonly regulated through autoinduction, which allows producers to quickly amplify the production of antibiotics in response to environmental cues. Antibiotic autoinduction generally involves one pathway-specific transcriptional regulator that perceives an antibiotic as a signal and then directly stimulates transcription of the antibiotic biosynthesis genes. Pyoluteorin is an autoregulated antibiotic produced by some Pseudomonas spp. including the soil bacterium Pseudomonas protegens Pf-5. In this study, we show that PltR, a known pathway-specific transcriptional activator of pyoluteorin biosynthesis genes, is necessary but not sufficient for pyoluteorin autoinduction in Pf-5. We found that pyoluteorin is perceived as an inducer by PltZ, a second pathway-specific transcriptional regulator that directly represses the expression of genes encoding a transporter in the pyoluteorin gene cluster. Mutation of pltZ abolished the autoinducing effect of pyoluteorin on the transcription of pyoluteorin biosynthesis genes. Overall, our results support an alternative mechanism of antibiotic autoinduction by which the two pathway-specific transcriptional regulators PltR and PltZ coordinate the autoinduction of pyoluteorin in Pf-5. Possible mechanisms by which PltR and PltZ mediate the autoinduction of pyoluteorin are discussed.

6.
Science ; 368(6495)2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32499412

RESUMEN

The accelerated evolution and spread of pathogens are threats to host species. Agrobacteria require an oncogenic Ti or Ri plasmid to transfer genes into plants and cause disease. We developed a strategy to characterize virulence plasmids and applied it to analyze hundreds of strains collected between 1927 and 2017, on six continents and from more than 50 host species. In consideration of prior evidence for prolific recombination, it was surprising that oncogenic plasmids are descended from a few conserved lineages. Characterization of a hierarchy of features that promote or constrain plasticity allowed inference of the evolutionary history across the plasmid lineages. We uncovered epidemiological patterns that highlight the importance of plasmid transmission in pathogen diversification as well as in long-term persistence and the global spread of disease.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Evolución Molecular , Plásmidos Inductores de Tumor en Plantas/genética , Rhizobiaceae/genética , Rhizobiaceae/patogenicidad , Modelos Biológicos , Filogenia , Rhizobiaceae/clasificación , Virulencia
7.
PLoS One ; 14(10): e0223269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31581220

RESUMEN

Pseudomonas putida is one of 13 major groups of Pseudomonas spp. and contains numerous species occupying diverse niches and performing many functions such as plant growth promotion and bioremediation. Here we compared a set of 19 P. putida isolates obtained from sugarcane rhizosphere or bulk soil using a population genomics approach aiming to assess genomic and metabolic differences between populations from these habitats. Phylogenomics placed rhizosphere versus bulk soil strains in separate clades clustering with different type strains of the P. putida group. Multivariate analyses indicated that the rhizosphere and bulk soil isolates form distinct populations. Comparative genomics identified several genetic functions (GO-terms) significantly different between populations, including some exclusively present in the rhizosphere or bulk soil strains, such as D-galactonic acid catabolism and cellulose biosynthesis, respectively. The metabolic profiles of rhizosphere and bulk soil populations analyzed by Biolog Ecoplates also differ significantly, most notably by the higher oxidation of D-galactonic/D-galacturonic acid by the rhizosphere population. Accordingly, D-galactonate catabolism operon (dgo) was present in all rhizosphere isolates and absent in the bulk soil population. This study showed that sugarcane rhizosphere and bulk soil harbor different populations of P. putida and identified genes and functions potentially associated with their soil niches.


Asunto(s)
Antibiosis , Genoma Bacteriano , Genómica , Metabolómica , Pseudomonas putida/fisiología , Rizosfera , Saccharum/fisiología , Microbiología del Suelo , Genética de Población , Genómica/métodos , Metabolómica/métodos , Filogenia , Pseudomonas putida/clasificación
8.
J Nat Prod ; 82(2): 301-308, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30666877

RESUMEN

Genome mining of the Gram-negative bacterium Pseudomonas fluorescens Pf0-1 showed that the strain possesses a silent NRPS-based biosynthetic gene cluster encoding a new lipopeptide; its activation required the repair of the global regulator system. In this paper, we describe the genomics-driven discovery and characterization of the associated secondary metabolite gacamide A, a lipodepsipeptide that forms a new family of Pseudomonas lipopeptides. The compound has a moderate, narrow-spectrum antibiotic activity and facilitates bacterial surface motility.


Asunto(s)
Proteínas Bacterianas/genética , Descubrimiento de Drogas , Lipopéptidos/genética , Péptidos Cíclicos/genética , Pseudomonas fluorescens/genética , Lipopéptidos/farmacología , Familia de Multigenes , Péptidos Cíclicos/farmacología
9.
Environ Microbiol ; 20(12): 4401-4414, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30033663

RESUMEN

Bulk soil and rhizosphere are soil compartments selecting different microbial communities. However, it is unknown whether this selection also can change the genome content of specific bacterial taxa, splitting a population in distinct ecotypes. To answer this question we compared the genome sequences of 53 isolates obtained from sugarcane rhizosphere (28) and bulk soil (25). These isolates were previously classified in the Pseudomonas koreensis subgroup of the P. fluorescens complex. Phylogenomics showed a trend of separation between bulk soil and rhizosphere isolates. Discriminant analysis of principal components (DAPC) identified differences in the accessory genome of rhizosphere and bulk soil sub-populations. We found significant changes in gene frequencies distinguishing rhizosphere from bulk soil ecotypes, for example, enrichment of phosphatases and xylose utilization (xut) genes, respectively. Phenotypic assays and deletion of xutA gene indicated that accumulation of xut genes in the bulk soil sub-population provided a higher growth capacity in a d-xylose medium, supporting the corresponding genomic differences. Despite the clear differences distinguishing the two ecotypes, all 53 isolates were classified in a single 16S rRNA gene OTU. Collectively, our results revealed that the gene pool and ecological behavior of a bacterial population can be different for ecotypes living in neighbouring soil habitats.


Asunto(s)
Variación Genética , Pseudomonas/genética , Rizosfera , Microbiología del Suelo , Ecotipo , Pool de Genes , Microbiota , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Suelo
10.
Environ Microbiol ; 20(6): 2142-2159, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29633519

RESUMEN

Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in public databases. Results revealed that 394 of the 1224 genomes were distinct from any type strain, suggesting that the type strains represent only a fraction of the genomic diversity of the genus. The core genome of Pseudomonas was determined to contain 794 genes conferring primarily housekeeping functions. The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.


Asunto(s)
Genoma Bacteriano , Genómica , Filogenia , Pseudomonas/clasificación , Pseudomonas/genética , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica
11.
mBio ; 9(1)2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339425

RESUMEN

Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac- mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac- mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac- mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac- mutants: a reduced proportion of Gac- mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac- mutants.IMPORTANCE Many microorganisms produce antibiotics, which contribute to ecologic fitness in natural environments where microbes constantly compete for resources with other organisms. However, biosynthesis of antibiotics is costly due to the metabolic burdens of the antibiotic-producing microorganism. Our results provide an example of the fitness trade-off associated with antibiotic production. Under noncompetitive conditions, antibiotic biosynthesis led to accumulation of spontaneous mutants lacking a master regulator of antibiotic production. However, relatively few of these spontaneous mutants accumulated when a competitor was present. Results from this work provide information on the evolution of antibiotic biosynthesis and provide a framework for their discovery and regulation.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Mutación , Pseudomonas/crecimiento & desarrollo , Pseudomonas/genética , Metabolismo Secundario , Factores de Transcripción/genética , Metabolismo Energético , Interacciones Microbianas , Fenoles/metabolismo , Pseudomonas/metabolismo , Pirroles/metabolismo
12.
Environ Microbiol ; 20(1): 62-74, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29027341

RESUMEN

Fluorescent Pseudomonas spp. are widely studied for their beneficial activities to plants. To explore the genetic diversity of Pseudomonas spp. in tropical regions, we collected 76 isolates from a Brazilian soil. Genomes were sequenced and compared to known strains, mostly collected from temperate regions. Phylogenetic analyses classified the isolates in the P. fluorescens (57) and P. putida (19) groups. Among the isolates in the P. fluorescens group, most (37) were classified in the P. koreensis subgroup and two in the P. jessenii subgroup. The remaining 18 isolates fell into two phylogenetic subclades distinct from currently recognized P. fluorescens subgroups, and probably represent new subgroups. Consistent with their phylogenetic distance from described subgroups, the genome sequences of strains in these subclades are asyntenous to the genome sequences of members of their neighbour subgroups. The tropical isolates have several functional genes also present in known fluorescent Pseudomonas spp. strains. However, members of the new subclades share exclusive genes not detected in other subgroups, pointing to the potential for novel functions. Additionally, we identified 12 potential new species among the 76 isolates from the tropical soil. The unexplored diversity found in the tropical soil is possibly related to biogeographical patterns.


Asunto(s)
Biodiversidad , Genoma Bacteriano/genética , Pseudomonas fluorescens , Pseudomonas putida , Secuencia de Bases , Brasil , ADN Bacteriano/genética , Filogenia , Plantas/microbiología , Pseudomonas fluorescens/clasificación , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/aislamiento & purificación , Pseudomonas putida/clasificación , Pseudomonas putida/genética , Pseudomonas putida/aislamiento & purificación , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo
13.
Environ Microbiol ; 19(9): 3514-3525, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28631403

RESUMEN

Many microorganisms compete for extracellular iron using strain-specific chelators known as siderophores. The ferric-siderophore complex limits local access to iron because import requires a suitable cognate receptor. Interestingly, many species carry receptors that enable 'cross-feeding' on heterologous siderophores made by neighboring organisms, although little is known about how this ubiquitous behaviour is regulated. Here, we investigated the soil bacterium Pseudomonas protegens Pf-5, a strain remarkable for its ability to use dozens of heterologous siderophores. We characterized the expression of six pyoverdine-type (PVD) siderophore receptors in response to their cognate PVD. In general, we found expression is tightly regulated to reflect availability of their cognate PVD. In contrast, Pf-5 continues to secrete its own primary siderophore, PVDPf-5 , despite the capability and opportunity to cross-feed. We demonstrate that this strategy is beneficial in co-culture with a competing PVDPAO1 -producer, P. aeruginosa PAO1. Although Pf-5 can cross-feed on PVDPAO1 , production of PVDPf-5 is required to maintain a competitive advantage. We attribute this to an antagonistic effect of PVDPf-5 on the growth of PAO1, presumably through limiting access to iron. Our results demonstrate the benefits of excluding competitors out-weigh the incentives associated with a free-loader lifestyle for Pf-5.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Hierro/metabolismo , Oligopéptidos/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Sideróforos/metabolismo , Proteínas Portadoras/metabolismo , Pseudomonas aeruginosa/metabolismo
14.
Elife ; 62017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262092

RESUMEN

Metabolic co-regulation between biosynthetic pathways for secondary metabolites is common in microbes and can play an important role in microbial interactions. Here, we describe a novel mechanism of metabolic co-regulation in which an intermediate in one pathway is converted into signals that activate a second pathway. Our study focused on the co-regulation of 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, two antimicrobial metabolites produced by the soil bacterium Pseudomonas protegens. We show that an intermediate in DAPG biosynthesis, phloroglucinol, is transformed by a halogenase encoded in the pyoluteorin gene cluster into mono- and di-chlorinated phloroglucinols. The chlorinated phloroglucinols function as intra- and inter-cellular signals that induce the expression of pyoluteorin biosynthetic genes, pyoluteorin production, and pyoluteorin-mediated inhibition of the plant-pathogenic bacterium Erwinia amylovora. This metabolic co-regulation provides a strategy for P. protegens to optimize the deployment of secondary metabolites with distinct roles in cooperative and competitive microbial interactions.


Asunto(s)
Vías Biosintéticas/genética , Regulación Bacteriana de la Expresión Génica , Pseudomonas/genética , Pseudomonas/metabolismo , Metabolismo Secundario , Antibacterianos/metabolismo , Antibiosis , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/crecimiento & desarrollo , Fenoles/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Pseudomonas/fisiología , Pirroles/metabolismo
15.
PLoS One ; 11(8): e0161120, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27580176

RESUMEN

Ten strains representing four lineages of the Pseudomonas fluorescens group (P. chlororaphis, P. corrugata, P. koreensis, and P. fluorescens subgroups) were evaluated for toxicity to the tobacco hornworm Manduca sexta and the common fruit fly Drosophila melanogaster. The three strains within the P. chlororaphis subgroup exhibited both oral and injectable toxicity to the lepidopteran M. sexta. All three strains have the gene cluster encoding the FitD insect toxin and a ΔfitD mutant of P. protegens strain Pf-5 exhibited diminished oral toxicity compared to the wildtype strain. Only one of the three strains, P. protegens Pf-5, exhibited substantial levels of oral toxicity against the dipteran D. melanogaster. Three strains in the P. fluorescens subgroup, which lack fitD, consistently showed significant levels of injectable toxicity against M. sexta. In contrast, the oral toxicity of these strains against D. melanogaster was variable between experiments, with only one strain, Pseudomonas sp. BG33R, causing significant levels of mortality in repeated experiments. Toxin complex (Tc) gene clusters, which encode insecticidal properties in Photorhabdus luminescens, were identified in the genomes of seven of the ten strains evaluated in this study. Within those seven genomes, six types of Tc gene clusters were identified, distinguished by gene content, organization and genomic location, but no correlation was observed between the presence of Tc genes and insect toxicity of the evaluated strains. Our results demonstrate that members of the P. fluorescens group have the capacity to kill insects by both FitD-dependent and independent mechanisms.


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Familia de Multigenes , Pseudomonas fluorescens/genética , Animales , Drosophila melanogaster , Manduca
16.
PLoS One ; 11(7): e0159884, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27442435

RESUMEN

Pseudomonas protegens Pf-5 (formerly Pseudomonas fluorescens) is a biocontrol bacterium that produces the siderophore enantio-pyochelin under conditions of iron starvation in a process that is often accompanied by the secretion of its biosynthesis intermediates, salicylic acid and dihydroaeruginoic acid. In this study, we investigated whether several transporters that are encoded by genes within or adjacent to the enantio-pyochelin biosynthetic cluster, serve as efflux systems for enantio-pyochelin and/or its intermediates. In addition, we determined whether these transporters have broad substrates range specificity using a Phenotype Microarray system. Intriguingly, knockouts of the pchH and fetF transporter genes resulted in mutant strains that secrete higher levels of enantio-pyochelin as well as its intermediates salicylic acid and dihydroaeruginoic acid. Analyses of these mutants did not indicate significant change in transcription of biosynthetic genes involved in enantio-pyochelin production. In contrast, the deletion mutant of PFL_3504 resulted in reduced transcription of the biosynthetic genes as well as decreased dihydroaeruginoic acid concentrations in the culture supernatant, which could either point to regulation of gene expression by the transporter or its role in dihydroaeruginoic acid transport. Disruption of each of the transporters resulted in altered stress and/or chemical resistance profile of Pf-5, which may reflect that these transporters could have specificity for rather a broad range of substrates.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Transporte de Membrana/genética , Familia de Multigenes , Pseudomonas/genética , Antibacterianos/farmacología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Pseudomonas/efectos de los fármacos , Pseudomonas/metabolismo , Ácido Salicílico/metabolismo , Tiazoles/metabolismo , Transcripción Genética
17.
Environ Microbiol ; 18(10): 3509-3521, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27130686

RESUMEN

Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its capacity to suppress plant diseases and has since been shown to be lethal to certain insects. Among these is the common fruit fly Drosophila melanogaster, a well-established model organism for studies evaluating the molecular and cellular basis of the immune response to bacterial challenge. Pf-5 produces the insect toxin FitD, but a ΔfitD mutant of Pf-5 retained full toxicity against D. melanogaster in a noninvasive feeding assay, indicating that FitD is not a major determinant of Pf-5's oral toxicity against this insect. Pf-5 also produces a broad spectrum of exoenzymes and natural products with antibiotic activity, whereas a mutant with a deletion in the global regulatory gene gacA produces none of these exoproducts and also lacks toxicity to D. melanogaster. In this study, we made use of a panel of Pf-5 mutants having single or multiple mutations in the biosynthetic gene clusters for seven natural products and two exoenzymes that are produced by the bacterium under the control of gacA. Our results demonstrate that the production of rhizoxin analogs, orfamide A, and chitinase are required for full oral toxicity of Pf-5 against D. melanogaster, with rhizoxins being the primary determinant.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quitinasas/metabolismo , Drosophila melanogaster/microbiología , Lipopéptidos/metabolismo , Péptidos Cíclicos/metabolismo , Pseudomonas/metabolismo , Animales , Proteínas Bacterianas/genética , Quitinasas/genética , Drosophila melanogaster/efectos de los fármacos , Genes Reguladores , Lipopéptidos/toxicidad , Mutación , Péptidos Cíclicos/toxicidad , Pseudomonas/enzimología , Pseudomonas/genética , Pseudomonas/patogenicidad , Virulencia
18.
Front Microbiol ; 7: 497, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148187

RESUMEN

The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. The capacity to suppress disease is attributed to Pf-5's production of a large spectrum of antibiotics, which is controlled by complex regulatory circuits operating at the transcriptional and post-transcriptional levels. In this study, we analyzed the genomic sequence of Pf-5 for codon usage patterns and observed that the six rarest codons in the genome are present in all seven known antibiotic biosynthesis gene clusters. In particular, there is an abundance of rare codons in pltR, which encodes a member of the LysR transcriptional regulator family that controls the expression of pyoluteorin biosynthetic genes. To test the hypothesis that rare codons in pltR influence pyoluteorin production, we generated a derivative of Pf-5 in which 23 types of rare codons in pltR were substituted with synonymous preferred codons. The resultant mutant produced pyoluteorin at levels 15 times higher than that of the wild-type Pf-5. Accordingly, the promoter activity of the pyoluteorin biosynthetic gene pltL was 20 times higher in the codon-modified stain than in the wild-type. pltR has six AGA codons, which is the rarest codon in the Pf-5 genome. Substitution of all six AGA codons with preferred Arg codons resulted in a variant of pltR that conferred increased pyoluteorin production and pltL promoter activity. Furthermore, overexpression of tRNA[Formula: see text], the cognate tRNA for the AGA codon, significantly increased pyoluteorin production by Pf-5. A bias in codon usage has been linked to the regulation of many phenotypes in eukaryotes and prokaryotes but, to our knowledge, this is the first example of the role of a rare codon in the regulation of antibiotic production by a Gram-negative bacterium.

19.
Environ Microbiol ; 18(10): 3453-3465, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26945503

RESUMEN

Swarming motility is a flagella-driven multicellular behaviour that allows bacteria to colonize new niches and escape competition. Here, we investigated the evolution of specific mutations in the GacS/GacA two-component regulatory system in swarming colonies of Pseudomonas protegens Pf-5. Experimental evolution assays showed that repeated rounds of swarming by wildtype Pf-5 drives the accumulation of gacS/gacA spontaneous mutants on the swarming edge. These mutants cannot swarm on their own because they lack production of the biosurfactant orfamide A, but they do co-swarm with orfamide-producing wildtype Pf-5. These co-swarming assays further demonstrated that ΔgacA mutant cells indeed predominate on the edge and that initial ΔgacA:wildtype Pf-5 ratios of at least 2:1 lead to a collapse of the swarming colony. Subsequent whole-genome transcriptome analyses revealed that genes associated with motility, resource acquisition, chemotaxis and efflux were significantly upregulated in ΔgacA mutant on swarming medium. Moreover, transmission electron microscopy showed that ΔgacA mutant cells were longer and more flagellated than wildtype cells, which may explain their predominance on the swarming edge. We postulate that adaptive evolution through point mutations is a common feature of range-expanding microbial populations and that the putative fitness benefits of these mutations during dispersal of bacteria into new territories are frequency-dependent.


Asunto(s)
Proteínas Bacterianas/genética , Mutación , Pseudomonas/citología , Pseudomonas/metabolismo , Proteínas Bacterianas/metabolismo , Quimiotaxis , Flagelos/genética , Flagelos/metabolismo , Perfilación de la Expresión Génica , Pseudomonas/genética
20.
Mol Plant Microbe Interact ; 29(6): 435-46, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26959838

RESUMEN

From a screen of 36 plant-associated strains of Burkholderia spp., we identified 24 strains that suppressed leaf and pseudobulb necrosis of orchid caused by B. gladioli. To gain insights into the mechanisms of disease suppression, we generated a draft genome sequence from one suppressive strain, TC3.4.2R3. The genome is an estimated 7.67 megabases in size, with three replicons, two chromosomes, and the plasmid pC3. Using a combination of multilocus sequence analysis and phylogenomics, we identified TC3.4.2R3 as B. seminalis, a species within the Burkholderia cepacia complex that includes opportunistic human pathogens and environmental strains. We generated and screened a library of 3,840 transposon mutants of strain TC3.4.2R3 on orchid leaves to identify genes contributing to plant disease suppression. Twelve mutants deficient in suppression of leaf necrosis were selected and the transposon insertions were mapped to eight loci. One gene is in a wcb cluster that is related to synthesis of extracellular polysaccharide, a key determinant in bacterial-host interactions in other systems, and the other seven are highly conserved among Burkholderia spp. The fundamental information developed in this study will serve as a resource for future research aiming to identify mechanisms contributing to biological control.


Asunto(s)
Burkholderia/genética , Genoma Bacteriano , Mutagénesis , Orchidaceae/microbiología , Hojas de la Planta/microbiología , Agentes de Control Biológico , Burkholderia/patogenicidad , Elementos Transponibles de ADN , Genes Bacterianos , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Saccharum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...