Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2872, 2024 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311618

RESUMEN

In 2020/2021, several European brown hare syndrome virus (EBHSV) outbreaks were recorded in European hares (Lepus europaeus) from Catalonia, Spain. Recombination analysis combined with phylogenetic reconstruction and estimation of genetic distances of the complete coding sequences revealed that 5 strains were recombinants. The recombination breakpoint is located within the non-structural protein 2C-like RNA helicase (nucleotide position ~ 1889). For the genomic fragment upstream of the breakpoint, a non-pathogenic EBHSV-related strain (hare calicivirus, HaCV; GII.2) was the most closely related sequence; for the rest of the genome, the most similar strains were the European brown hare syndrome virus (EBHSV) strains recovered from the same 2020/2021 outbreaks, suggesting a recent origin. While the functional impact of the atypical recombination breakpoint remains undetermined, the novel recombinant strain was detected in different European brown hare populations from Catalonia, located 20-100 km apart, and seems to have caused a fatal disease both in juvenile and adult animals, confirming its viability and ability to spread and establish infection. This is the first report of a recombination event involving HaCV and EBHSV and, despite the recombination with a non-pathogenic strain, it appears to be associated with mortality in European brown hares, which warrants close monitoring.


Asunto(s)
Infecciones por Caliciviridae , Liebres , Lagovirus , Animales , España/epidemiología , Filogenia , Lagovirus/genética
2.
mBio ; : e0197123, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855614

RESUMEN

Emerging infectious diseases are a major challenge to human and animal health. While predicting the emergence of pathogens is complex, the advent of high-throughput sequencing technologies has allowed the rapid identification of unknown microbiology diversity within organisms. Here, we discuss an example of a metatranscriptomics output to decipher viral evolution.

3.
Front Vet Sci ; 10: 1235123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745217

RESUMEN

Since the first detection of rabbit hemorrhagic disease (RHD), the rabbit hemorrhagic disease virus (RHDV) has been responsible for high morbidity and mortality worldwide, both in domestic and in wild rabbits. Despite the apparent control of RHD in rabbitries through vaccination, several studies highlighted the rapid evolution of RHDV by recombination, which may facilitate the emergence of new pathogenic strains. The aim of this study was to confirm the presence and characterize RHDV in Algeria. For this, rabbit samples were collected in the north of Algeria, between 2018 and 2021, from small farms where the virus was suspected after the sudden death of a high number of rabbits, and from healthy hunted wild rabbits. The domestic rabbits revealed clinical signs and lesions that were suggestive of RHD. RT-PCR showed that 79.31% of the domestic rabbit samples were positive for RHDV, while in 20.69%, including the hunted rabbits, the virus was not detected. Phylogenetic analysis of the Algerian strains allowed the confirmation and identification as GI.2 (RHDV2), and showed a close relation to GI.3P-GI.2 recombinant strains, suggesting a potential introduction from other countries, with an older strain potentially originated from neighboring Tunisia, while more recent isolates grouped with strains from North America. Our study reports for the first time the presence of GI.2 (RHDV2) in Algeria with multiple routes of introduction. Consequently, we propose that RHDV control in Algeria should be based on epidemiological surveys in association with an adequate prophylactic program.

4.
Neurol Clin Pract ; 13(5): e200190, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37674869

RESUMEN

Background and Objectives: The RFC1 spectrum has become considerably expanded as multisystemic features beyond the triad of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) have started to be unveiled, although many still require clinical replication. Here, we aimed to clinically characterize a cohort of RFC1-positive patients by addressing both classic and multisystemic features. In a second part of this study, we prospectively assessed small nerve fibers (SNF) and autonomic function in a subset of these RFC1-related patients. Methods: We retrospectively enrolled 67 RFC1-positive patients from multiple neurologic centers in Portugal. All patients underwent full neurologic and vestibular evaluation, as well as neuroimaging and neurophysiologic studies. For SNF and autonomic testing (n = 15), we performed skin biopsies, quantitative sensory testing, sudoscan, sympathetic skin response, heart rate deep breathing, and tilt test. Results: Multisystemic features beyond CANVAS were present in 82% of the patients, mainly chronic cough (66%) and dysautonomia (43%). Other features included motor neuron (MN) affection and motor neuropathy (18%), hyperkinetic movement disorders (16%), sleep apnea (6%), REM and non-REM sleep disorders (5%), and cranial neuropathy (5%). Ten patients reported an inverse association between cough and ataxia severity. A very severe epidermal denervation was found in skin biopsies of all patients. Autonomic dysfunction comprised cardiovascular (67%), cardiovagal (54%), and/or sudomotor (50%) systems. Discussion: The presence of MN involvement, motor neuropathy, small fiber neuropathy, or extrapyramidal signs should not preclude RFC1 testing in cases of sensory neuronopathy. Indeed, the RFC1 spectrum can overlap not only with multiple system atrophy but also with hereditary motor and sensory neuropathy, hereditary sensory and autonomic neuropathy, and feeding dystonia phenotypes. Some clinical-paraclinical dissociations can pose diagnostic challenges, namely large and small fiber neuropathy and sudomotor dysfunction which are usually subclinical.

5.
Virol J ; 20(1): 103, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237382

RESUMEN

The European rabbit (Oryctolagus cuniculus) populations of the Iberian Peninsula have been severely affected by the emergence of the rabbit haemorrhagic disease virus (RHDV) Lagovirus europaeus/GI.2 (RHDV2/b). Bushflies and blowflies (Muscidae and Calliphoridae families, respectively) are important RHDV vectors in Oceania, but their epidemiological role is unknown in the native range of the European rabbit. In this study, scavenging flies were collected between June 2018 and February 2019 in baited traps at one site in southern Portugal, alongside a longitudinal capture-mark-recapture study of a wild European rabbit population, aiming to provide evidence of mechanical transmission of GI.2 by flies. Fly abundance, particularly from Calliphoridae and Muscidae families, peaked in October 2018 and in February 2019. By employing molecular tools, we were able to detect the presence of GI.2 in flies belonging to the families Calliphoridae, Muscidae, Fanniidae and Drosophilidae. The positive samples were detected during an RHD outbreak and absent in samples collected when no evidence of viral circulation in the local rabbit population was found. We were able to sequence a short viral genomic fragment, confirming its identity as RHDV GI.2. The results suggest that scavenging flies may act as mechanical vectors of GI.2 in the native range of the southwestern Iberian subspecies O. cuniculus algirus. Future studies should better assess their potential in the epidemiology of RHD and as a tool for monitoring viral circulation in the field.


Asunto(s)
Infecciones por Caliciviridae , Dípteros , Virus de la Enfermedad Hemorrágica del Conejo , Lagovirus , Animales , Conejos , Lagovirus/genética , Infecciones por Caliciviridae/epidemiología , Filogenia , Virus de la Enfermedad Hemorrágica del Conejo/genética
6.
J Sports Med Phys Fitness ; 63(1): 53-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35415998

RESUMEN

BACKGROUND: To analyze whether pre-exercise CHO+PRO vs. CHO intake distinctly influences running performance and metabolic biomarkers along a various of exercise intensities. METHODS: In a randomized, double blind, counterbalanced, crossover and placebo control design, 10 middle distance runners were tested in 3 occasions. After 10 h of fasting, participants ingested isovolumic beverages (0.75+0.25g·BW-1 of CHO+PRO, 1.0g·BW-1 of CHO and placebo control) 30 min before a treadmill running incremental protocol of 4 min steps until exhaustion. Venous blood was collected at fasting, 30 min after beverage ingestion and after the 3rd and 7th running steps. Oxygen uptake-related variables, including respiratory exchange ratio, heart rate, plasma glucose, insulin, glucagon, free fatty acids, blood lactate concentrations, gastrointestinal discomfort and rate of perceived exertion were measured. RESULTS: The addition of PRO to CHO had no influence on the measured variables, which did not differ between conditions along all incremental protocol intensities. The intake of CHO+PRO (compared to CHO) tended to decrease glycemia (106.5±21.3 vs. 113.6±26.5) and to increase insulinemia (14.4±15.1 vs. 12.7±10.8) at intensities close to maximum oxygen uptake. CONCLUSIONS: The addition of PRO to a pre-exercise CHO beverage had no impact on running performance and related metabolic variables at a wide spectrum of exercise intensities.


Asunto(s)
Consumo de Oxígeno , Carrera , Humanos , Resistencia Física/fisiología , Carbohidratos de la Dieta , Glucemia/metabolismo , Oxígeno , Carrera/fisiología , Bebidas , Ácido Láctico , Método Doble Ciego
7.
Acta Diabetol ; 60(1): 83-91, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36208343

RESUMEN

AIMS: Monogenic forms of diabetes that develop with autosomal dominant inheritance are classically aggregated in the Maturity-Onset Diabetes of the Young (MODY) categories. Despite increasing awareness, its true prevalence remains largely underestimated. We describe a Portuguese cohort of individuals with suspected monogenic diabetes who were genetically evaluated for MODY-causing genes. METHODS: This single-center retrospective cohort study enrolled patients with positive genetic testing for MODY between 2015 and 2021. Automatic sequencing and, in case of initial negative results, next-generation sequencing were performed. Their clinical and molecular characteristics were described. RESULTS: Eighty individuals were included, 55 with likely pathogenic/pathogenic variants in one of the MODY genes and 25 MODY-positive family members, identified by cascade genetic testing. The median age at diabetes diagnosis was 23 years, with a median HbA1c of 6.5%. The most frequently mutated genes were identified in HNF1A (40%), GCK (34%) and HNF4A (13%), followed by PDX1, HNF1B, INS, KCNJ11 and APPL1. Thirty-six unique variants were found (29 missense and 7 frameshift variants), of which ten (28%) were novel. CONCLUSIONS: Our data highlights the importance of genetic testing in the diagnosis of MODY and the establishment of its subtypes, leading to more personalized treatment and follow-up strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Adulto Joven , Adulto , Mutación , Portugal/epidemiología , Estudios Retrospectivos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Pruebas Genéticas
8.
Int J Vet Sci Med ; 10(1): 100-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407496

RESUMEN

Bats have long been associated with multiple pathogens, including viruses affecting humans such as henipaviruses, filoviruses, bunyaviruses and coronaviruses. The alpha and beta coronaviruses genera can infect most mammalian species. Among them, betacoronavirus SARS-CoV, MERS-CoV and SARS-CoV-2, which have caused the three major pandemics in the last two decades, have been proposed to originate in bats. In this study, 194 oral swabs from 22 bats species sampled in 19 locations of the Iberian Peninsula were analysed and characterized by three different PCR tests (coronavirus generic real-time RT-PCR, multiplex conventional PCR, and SARS-CoV-2 specific real-time RT-PCR) to detect bat coronaviruses. Screening with coronavirus generic PCR showed 102 positives out of 194 oral swabs analysed. Then, metabarcoding with multiplex PCR amplified 15 positive samples. Most of the coronaviruses detected in this study belong to alphacoronavirus (α-CoV) genus, with multiple alphacoronaviruses identified by up to five different genetic variants coexisting in the same bat. One of the positive samples identified in a Miniopterus schreibersii bat positive for the generic coronavirus PCR and the specific SARS-CoV-2 PCR was classified as betacoronavirus (-CoV) through phylogenetic analysis. These results support the rapid evolution of coronaviruses to generate new genomic potentially pathogenic variants likely through co-infection and recombination.

9.
Transbound Emerg Dis ; 69(5): e3024-e3035, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35810475

RESUMEN

Estimation of the diagnostic performance of serological tests often relies on another test assumed as a reference or on samples of known infection status, yet both are seldom available for emerging pathogens in wildlife. Longitudinal disease serological data can be analysed through multi-event capture-mark-recapture (MECMR) models accounting for the uncertainty in state assignment, allowing us to estimate epidemiological parameters such as incidence and mortality. We hypothesized that by estimating the uncertainty in state assignment, MECMR models estimate the diagnostic performance of serological tests for rabbit haemorrhagic disease virus (RHDV) and myxoma virus (MYXV). We evaluated this hypothesis on longitudinal serological data of three tests of RHDV and one test of MYXV in two populations of the European rabbit (Oryctolagus cuniculus algirus). First, we selected the optimal cut-off threshold for each test using finite mixture models, a reference method not relying on reference tests or samples. Second, we used MECMR models to compare the diagnostic sensitivity (Se) and specificity (Sp) of the three tests for RHDV. Third, we compared the estimates of diagnostic performance by MECMR and finite mixture models across a range of cut-off values. The MECMR models showed that the RHDV test employing GI.2 antigens (Se: 100%) outperformed two tests employing GI.1 antigens (Se: 21.7% ± 8.6% and 8.7% ± 5.9%). At their selected cut-offs (2.0 for RHDV GI.2 and 2.4 for MYXV), the estimates of Se and Sp were concordant between the MECMR and finite mixture models. Over the duration of the study (May 2018 to September 2020), the monthly survival of European rabbits seropositive for MYXV was significantly higher than that of seronegative rabbits (82.7% ± 4.9% versus 61.5% ± 12.7%) at the non-fenced site. We conclude that MECMR models can reliably estimate the diagnostic performance of serological tests for RHDV and MYXV in European rabbits. This conclusion could extend to other diagnostic tests and host-pathogen systems. Longitudinal disease surveillance data analysed through MECMR models allow the validation of diagnostic tests for emerging pathogens in novel host species while simultaneously estimating epidemiological parameters.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Myxoma virus , Mixoma , Animales , Infecciones por Caliciviridae/diagnóstico , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Mixoma/veterinaria , Conejos , Pruebas Serológicas/veterinaria
10.
Biology (Basel) ; 10(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34571760

RESUMEN

Rabbit hemorrhagic disease (RHD) causes high mortality and morbidity in European rabbits (Oryctolagus cuniculus). In Africa, the presence of the causative agent, the rabbit hemorrhagic disease virus (RHDV), was first confirmed in 1992 (genotype Lagovirus europaeus/GI.1). In 2015, the new genotype Lagovirus europaeus/GI.2 (RHDV2/b) was detected in Tunisia. Currently, GI.2 strains are present in several North and Sub-Saharan African countries. Considerable economic losses have been observed in industrial and traditional African rabbitries due to RHDV. Like other RNA viruses, this virus presents high recombination rates, with the emergence of GI.2 being associated with a recombinant strain. Recombination events have been detected with both pathogenic (GI.1b and GII.1) and benign (GI.3 and GI.4) strains. We obtained complete genome sequences of Tunisian GI.2 strains collected between 2018 and 2020 and carried out phylogenetic analyses. The results revealed that Tunisian strains are GI.3P-GI.2 strains that were most likely introduced from Europe. In addition, the results support the occurrence of multiple introductions of GI.2 into Africa, stressing the need for characterizing complete genome sequences of the circulating lagoviruses to uncover their origin. Continued monitoring and control of rabbit trade will grant a better containment of the disease and reduce the disease-associated economic losses.

11.
Transbound Emerg Dis ; 68(6): 3187-3193, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34324796

RESUMEN

Viruses that affect lagomorphs have decades of reported history of spillover events. One of these viruses is the causative agent of the so-called rabbit or 'lagomorph' haemorrhagic disease (e.g. Lagovirus europaeus/GI.1 and L. europaeus/GI.2). In particular, L. europaeus/GI.2 has shown a great capacity to recombine with existing lagoviruses. In fact, it has replaced the former GI.1 genotype in the wild, and recently, an increase on spillover events has been detected among several lagomorph species including European and North American species of hares. In this study, we report for the first time the infection of a wild Iberian hare with GI.2 (RHDV2/b), potential shedding and associated histopathological alterations. We identify the recombinant GI.4P-GI.2 as causative of the infection and discuss plausible causes regarding the origin of the spillover event and its potential consequences for the Iberian hare wild populations, which is an endemic species of the Iberian Peninsula as well as an important game and prey species for many predators, including endangered species.


Asunto(s)
Infecciones por Caliciviridae , Liebres , Lagovirus , Animales , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Europa (Continente) , Filogenia , Conejos , España/epidemiología
12.
Microorganisms ; 9(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946292

RESUMEN

Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33865234

RESUMEN

SUMMARY: Pituitary metastasis (PM) can be the initial presentation of an otherwise unknown malignancy. As PM has no clinical or radiological pathognomonic features, diagnosis is challenging. The authors describe the case of a symptomatic PM that revealed a primary lung adenocarcinoma. A 62-year-old woman with multiple sclerosis and no history of malignancy, incidentally presented with a diffusely enlarged and homogeneously enhancing pituitary gland associated with stalk enlargement. Clinical and biochemical evaluation revealed anterior hypopituitarism and diabetes insipidus. Hypophysitis was considered the most likely diagnosis. However, rapid visual deterioration and pituitary growth raised the suspicion of metastatic involvement. A search for systemic malignancy was performed, and CT revealed a lung mass, which proved to be a lung adenocarcinoma. Accordingly, the patient was started on immunotherapy. Resection of the pituitary lesion was performed, and histopathology analysis revealed metastatic lung adenocarcinoma. Following surgery, the patient underwent radiotherapy. More than 2 years after PM detection, the patient shows a clinically relevant response to antineoplastic therapy and no evidence of PM recurrence. LEARNING POINTS: Although rare, metastatic involvement of the pituitary gland has been reported with increasing frequency during the last decades. Pituitary metastasis can be the initial presentation of an otherwise unknown malignancy and should be considered in the differential diagnosis of pituitary lesions, irrespective of a history of malignancy. The sudden onset and rapid progression of visual or endocrine dysfunction from a pituitary lesion should strongly raise the suspicion of metastatic disease. MRI features of pituitary metastasis can overlap with those of other pituitary lesions, including hypophysitis; however, rapid pituitary growth is highly suggestive of metastatic disease. Survival after pituitary metastasis detection has improved over time, encouraging individualized interventions directed to metastasis to improve quality of life and increase survival.

14.
Artículo en Inglés | MEDLINE | ID: mdl-33522494

RESUMEN

SUMMARY: Molecular alterations of the transcription factor hepatocyte nuclear factor 1B (HNF1B) are associated with systemic disease, with kidney disease and maturity-onset diabetes of the young (MODY) as the most characteristic manifestations. Other features comprise pancreatic exocrine insufficiency, liver and biliary anomalies, and genital tract malformations. HNF1B-associated disease is clinically heterogeneous, and therefore the diagnosis is challenging. The authors describe the case of a 19-year-old man with new-onset diabetes after kidney transplantation (NODAT). The kidney disease presented during fetal life as bilateral hyperechogenic kidneys. Renal function progressively deteriorated during childhood, and at the age of 19, the patient was submitted to a living-kidney transplant. Two weeks after transplant, NODAT developed. Given the young age and normal body weight, NODAT was unexpected, and the possibility of HNF1B-associated disease was considered. Screening for mutations in HNF1B was undertaken, and a known mutation was found. As this case highlights, HNF1B-associated disease should be considered when NODAT unexpectedly develops in young kidney transplant recipients with a suggestive renal disease. LEARNING POINTS: HNF1B anomalies are associated with systemic disease, including kidney disease, diabetes mellitus, pancreatic exocrine insufficiency, liver test abnormalities and genital tract malformations. Phenotype is variable and there are no pathognomonic manifestations, but kidney disease appears to be the most common feature and diabetes the most frequent extra-renal phenotype. Spontaneous gene alterations are common, and the lack of family history should not exclude the diagnosis. HNF1B defects should be considered when NODAT develops in a young adult kidney transplant recipient with a suggestive kidney disease and without extensive risk factors for diabetes. The most appropriate treatment for HNF1B-associated diabetes is not established, but immunosuppressive therapy superimposed on a beta-cell dysfunction seems to determine the need for insulin therapy after a variable period. Immunosupressive regimens free of calcineurin inhibitors should be considered in patients with HNF1B-associated disease to minimize the risk of developing NODAT.

15.
Sci Rep ; 10(1): 14502, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879332

RESUMEN

Rabbit haemorrhagic disease is a viral disease that emerged in the 1980s and causes high mortality and morbidity in the European rabbit (Oryctolagus cuniculus). In 2010, a new genotype of the rabbit haemorrhagic disease virus emerged and replaced the former circulating Lagovirus europaeus/GI.1 strains. Several recombination events have been reported for the new genotype Lagovirus europaeus/GI.2, with pathogenic (variants GI.1a and GI.1b) and benign (genotype GI.4) strains that served as donors for the non-structural part while GI.2 composed the structural part; another recombination event has also been described at the p16/p23 junction involving GI.4 strains. In this study, we analysed new complete coding sequences of four benign GI.3 strains and four GI.2 strains. Phylogenetic and recombination detection analyses revealed that the first GI.2 strains, considered as non-recombinant, resulted from a recombination event between GI.3 and GI.2, with GI.3 as the major donor for the non-structural part and GI.2 for the structural part. Our results indicate that recombination contributed to the emergence, persistence and dissemination of GI.2 as a pathogenic form and that all described GI.2 strains so far are the product of recombination. This highlights the need to study full-genomic sequences of lagoviruses to understand their emergence and evolution.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/genética , Filogenia , Recombinación Genética , Animales , Infecciones por Caliciviridae/virología , Cápside , Francia , Genoma Viral , Genotipo , Funciones de Verosimilitud , Conejos/virología
16.
Genes (Basel) ; 11(8)2020 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784857

RESUMEN

Recombination is one of the major sources of genetic variation in viruses. RNA viruses, such as rabbit hemorrhagic disease virus (RHDV), are among the viruses with the highest recombination rates. Several recombination events have been described for RHDV, mostly as a consequence of their genomic architecture. Here, we undertook phylogenetic and recombination analyses of French and Swedish RHDV strains from 1994 to 2016 and uncovered a new intergenotypic recombination event. This event occurred in the late 1990s/early 2000s and involved nonpathogenic GI.3 strains as donors for the nonstructural part of the genome of these recombinants, while pathogenic GI.1d strains contributed to the structural part. These GI.3P-GI.1d recombinant strains did not entirely replace GI.1d (nonrecombinant) strains, but became the dominant strains in France and Sweden, likely due to a fitness advantage associated with this genomic architecture. GI.3P-GI.1d (P stands for polymerase) strains persisted until 2013 and 2016 in Sweden and France, respectively, and cocirculated with the new genotype GI.2 in France. Since strains from the first GI.2 outbreaks were GI.3P-GI.2, we hypothesize that GI.3P-GI.1d could be the parental strain. Our results confirm the outstanding recombination ability of RHDV and its importance in the evolution of lagoviruses, which was only revealed by studying complete genomic sequences.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/clasificación , Virus de la Enfermedad Hemorrágica del Conejo/genética , Recombinación Genética , Animales , Animales Salvajes , Evolución Molecular , Francia/epidemiología , Genoma Viral , Genotipo , Historia del Siglo XX , Filogenia , ARN Viral , Estudios Retrospectivos , Suecia/epidemiología
17.
19.
BMC Evol Biol ; 19(1): 59, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30786851

RESUMEN

BACKGROUND: The C-C motif chemokine ligand 16 (CCL16) is a potent pro-inflammatory chemokine and a chemoattractant for monocytes and lymphocytes. In normal plasma, it is present at high concentrations and elicits its effects on cells by interacting with cell surface chemokine receptors. In the European rabbit and in rodents such as mouse, rat and guinea pig, CCL16 was identified as a pseudogene, while in the thirteen-lined ground squirrel it appears to be potentially functional. To gain insight into the evolution of this gene in the superorder Glires (rodents and lagomorphs), we amplified the CCL16 gene from eleven Leporidae and seven Ochotonidae species. RESULTS: We compared our sequences with CCL16 sequences of twelve rodent species retrieved from public databases. The data show that for all leporid species studied CCL16 is a pseudogene. This is primarily due to mutations at the canonical Cys Cys motif, creating either premature stop codons, or disrupting amino acid replacements. In the Mexican cottontail, CCL16 is pseudogenized due to a frameshift deletion. Additionally, in the exon 1 (signal peptide), there are frameshift deletions present in all leporids studied. In contrast, in Ochotona species, CCL16 is potentially functional, except for an allele in Hoffmann's pika. In rodents, CCL16 is functional in a number of species, but patterns of pseudogenization similar to those observed in lagomorphs also exist. CONCLUSIONS: Our results suggest that while functional in the Glires ancestor, CCL16 underwent pseudogenization in some species. This process occurred stochastically or in specific lineages at different moments in the evolution of Glires. These observations suggest that the CCL16 had different evolutionary constrains in the Glires group that could be associated with the CCL16 biological function.


Asunto(s)
Quimiocinas/genética , Evolución Molecular , Lagomorpha/genética , Seudogenes/genética , Roedores/genética , Secuencia de Aminoácidos , Animales , Quimiocinas/química , Exones , Humanos , Ligandos , Filogenia
20.
Arch Virol ; 164(1): 279-283, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30284631

RESUMEN

Rabbit hemorrhagic disease virus (RHDV) is highly lethal to the European rabbit (Oryctolagus cuniculus). It was first reported in 1984 in China, but in 2010, a new variant of the virus was detected (GI.2) in France. Several recombination events with pathogenic and non-pathogenic strains have been described. Here, we report the first sequences of RHDV in Africa, isolated from Moroccan rabbits, and these resemble GI.1b/GI.1b/GI.2 recombinants found in the Iberian Peninsula. Monitoring and characterization of strains from future outbreaks are advised to guarantee the success of current programs on small-rabbit production for poverty alleviation in African countries.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Lagovirus/genética , Lagovirus/aislamiento & purificación , Conejos/virología , Animales , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Marruecos/epidemiología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...