Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189011, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37923232

RESUMEN

Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.


Asunto(s)
Cristales Líquidos , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Cristales Líquidos/química
2.
Pharmaceutics ; 15(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37631292

RESUMEN

Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.

3.
Pharmaceutics ; 15(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37514156

RESUMEN

Nanosystems provide an attractive approach to pharmacological therapy, with the possibility of enhancing the performance and overcoming the constraints of conventional therapies, thus adding substantial value to some of the already available formulations [...].

4.
Pharmaceutics ; 15(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111802

RESUMEN

Cancer is one of the leading causes of death, and latest predictions indicate that cancer- related deaths will increase over the next few decades. Despite significant advances in conventional therapies, treatments remain far from ideal due to limitations such as lack of selectivity, non-specific distribution, and multidrug resistance. Current research is focusing on the development of several strategies to improve the efficiency of chemotherapeutic agents and, as a result, overcome the challenges associated with conventional therapies. In this regard, combined therapy with natural compounds and other therapeutic agents, such as chemotherapeutics or nucleic acids, has recently emerged as a new strategy for tackling the drawbacks of conventional therapies. Taking this strategy into consideration, the co-delivery of the above-mentioned agents in lipid-based nanocarriers provides some advantages by improving the potential of the therapeutic agents carried. In this review, we present an analysis of the synergistic anticancer outcomes resulting from the combination of natural compounds and chemotherapeutics or nucleic acids. We also emphasize the importance of these co-delivery strategies when reducing multidrug resistance and adverse toxic effects. Furthermore, the review delves into the challenges and opportunities surrounding the application of these co-delivery strategies towards tangible clinical translation for cancer treatment.

5.
Pharmaceutics ; 15(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36839648

RESUMEN

Current needs for increased drug delivery carrier efficacy and specificity in cancer necessitate the adoption of intelligent materials that respond to environmental stimuli. Therefore, we developed and optimized pH-triggered drug delivery nanoassemblies that exhibit an increased release of doxorubicin (DOX) in acidic conditions typical of cancer tissues and endosomal vesicles (pH 5.5) while exhibiting significantly lower release under normal physiological conditions (pH 7.5), indicating the potential to reduce cytotoxicity in healthy cells. The hybrid (polymeric/lipid) composition of the lyotropic non-lamellar liquid crystalline (LNLCs) nanoassemblies demonstrated high encapsulation efficiency of the drug (>90%) and high drug loading content (>7%) with colloidal stability lasting at least 4 weeks. Confocal microscopy revealed cancer cellular uptake and DOX-loaded LNLCs accumulation near the nucleus of human hepatocellular carcinoma cells, with a large number of cells appearing to be in apoptosis. DOX-loaded LNLCs have also shown higher citotoxicity in cancer cell lines (MDA-MB 231 and HepG2 cell lines after 24 h and in NCI-H1299 cell line after 48 h) when compared to free drug. After 24 h, free DOX was found to have higher cytotoxicity than DOX-loaded LNLCs and empty LNLCs in the normal cell line. Overall, the results demonstrate that DOX-loaded LNLCs have the potential to be explored in cancer therapy.

6.
Colloids Surf B Biointerfaces ; 221: 112999, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368148

RESUMEN

The blood-brain barrier (BBB) restricts the access of therapeutic agents to the brain, complicating the treatment of neurological diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), glioma, etc. To overcome this limitation and improve drug delivery to the central nervous system (CNS), the potential of nanocarriers, including lipid-based nanosystems, has been explored. Through active targeting, the surface of the nanocarriers can be modified with ligands that interact with the BBB, enhancing their uptake and penetration across the brain endothelium by different physiological mechanisms, such as receptor- or transporter-mediated transcytosis. This review seeks to provide an overview of active targeting in brain delivery, while highlighting the potential of functionalized lipid nanocarriers to treat brain diseases. Therefore, in the first sections, we discuss the importance of active targeting in CNS drug delivery, present the different ligands commonly used for functionalization, as well as summarize the state of the art of the most recent and relevant studies of surface-modified lipid nanosystems developed for neurological disorders. Lastly, challenges hindering clinical translation are discussed, and critical insights and future perspectives outlined. Although some limitations have been identified, it is expected that in the upcoming years these nanosystems will be an established approach.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Humanos , Barrera Hematoencefálica , Ligandos , Lípidos
7.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221375, 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1403632

RESUMEN

Abstract Here, we summarize examples of significant advances in amphibian research supported by the São Paulo Research Foundation (FAPESP), focusing on recent discoveries in the fields of community ecology, habitat change, infection diseases, and multipurpose DNA sequencing. We demonstrated that FAPESP has been fundamental not only by directly funding research projects and scholarships, but also through its science training policy, fostering international collaborations with world-class research institutions, improving and consolidating new lines of research that often depended on a synergetic combination of different knowledge and complex tools. We emphasized that future studies will continue to focus on basic questions, such as description of new species, as well as taxonomic and systematic corrections. Furthermore, we also expect that there will be a strong integration among different disciplines using novel bioinformatics tools and modeling approaches, such as machine learning. These new approaches will be critical to further develop our understanding of foundational questions of amphibian life-history trait variation, disease transmission, community assembly, biogeography, and population forecasts under different global change scenarios such as agricultural expansion, agrochemical use, habitat loss, and climate change.


Resumo No presente estudo apresentamos exemplos de avanços significativos nas pesquisas com anfíbios financiadas pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), focando em descobertas recentes nos campos de ecologia de comunidades, modificação do habitat, doenças infecciosas e o sequenciamento de DNA com múltiplos propósitos. Demonstramos que a FAPESP tem sido fundamental não somente pelo financiamento direto de projetos de pesquisa e bolsas de estudo, mas também através de sua política de formação científica, fomentando colaborações internacionais com instituições de pesquisa de excelência mundial, melhorando e consolidando novas linhas de pesquisa que frequentemente dependem da combinação sinérgica entre diferentes linhas de conhecimento e ferramentas complexas. Enfatizamos que futuros estudos continuem com foco em questões básicas, como a descrição de novas espécies, bem como correções taxonômicas e sistemáticas. Além disso, esperamos uma forte integração entre diferentes disciplinas usando novas ferramentas de bioinformática e abordagens de modelagem, como o aprendizado de máquina. Essas novas abordagens serão críticas para desenvolver ainda mais nossa compreensão a respeito de questões fundamentais sobre as características da história de vida dos anfíbios, transmissão de doenças, estrutura de comunidades, biogeografia e previsões populacionais em diferentes cenários de mudanças globais, como a expansão da agricultura, uso de agrotóxicos, perda de habitat e mudanças climáticas.

8.
Pharmaceutics ; 13(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34452163

RESUMEN

Resveratrol (RSV) and omega 3 (ω3), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω3 in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment. Each formulation is thoroughly characterized regarding their physical-chemical properties. Subsequently, the therapeutic performance of the lipid nanosystems is evaluated based on their protective roles against lipid peroxidation, as well as inhibition of cicloxygenase (COX) and nitric oxid (NO) production in the RWA264.7 cell line. Finally, the lipid nanosystems are incorporated in hydrogel to allow their topical administration, then rheology, occlusion, and RSV release-diffusion assays are performed. Lipid nanoparticles provide occlusive effects at the skin surface. Liposomes provide sustained RSV release and their flexibility conferred by edge activator components enhances RSV diffusion, which is required to reach NO production cells and COX cell membrane enzymes. Overall, the inclusion of both lipid nanosystems in the same semisolid base constitutes a promising strategy for autoimmune, inflammatory, and cancerous skin diseases.

9.
Pharmaceutics ; 13(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34452255

RESUMEN

Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.

10.
Pharmaceutics ; 12(6)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545276

RESUMEN

Neurodegenerative diseases (NDs) bear a lot of weight in public health. By studying the properties of the blood-brain barrier (BBB) and its fundamental interactions with the central nervous system (CNS), it is possible to improve the understanding of the pathological mechanisms behind these disorders and create new and better strategies to improve bioavailability and therapeutic efficiency, such as nanocarriers. Microfluidics is an intersectional field with many applications. Microfluidic systems can be an invaluable tool to accurately simulate the BBB microenvironment, as well as develop, in a reproducible manner, drug delivery systems with well-defined physicochemical characteristics. This review provides an overview of the most recent advances on microfluidic devices for CNS-targeted studies. Firstly, the importance of the BBB will be addressed, and different experimental BBB models will be briefly discussed. Subsequently, microfluidic-integrated BBB models (BBB/brain-on-a-chip) are introduced and the state of the art reviewed, with special emphasis on their use to study NDs. Additionally, the microfluidic preparation of nanocarriers and other compounds for CNS delivery has been covered. The last section focuses on current challenges and future perspectives of microfluidic experimentation.

11.
Pharmaceutics ; 10(4)2018 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-30558378

RESUMEN

Many graphene-based materials (GBNs) applied to therapy and diagnostics (theranostics) in cancer have been developed. Most of them are hybrid combinations of graphene with other components (e.g, drugs or other bioactives, polymers, and nanoparticles) aiming toward a synergic theranostic effect. However, the role of graphene in each of these hybrids is sometimes not clear enough and the synergic graphene effect is not proven. The objective of this review is to elaborate on the role of GBNs in the studies evaluated and to compare the nanoformulations in terms of some of their characteristics, such as therapeutic outcomes and toxicity, which are essential features for their potential use as bionanosystems. A systematic review was carried out using the following databases: PubMed, Scopus, and ISI Web of Science (2013⁻2018). Additional studies were identified manually by consulting the references list of relevant reviews. Only English papers presenting at least one strategy for cancer therapy and one strategy for cancer diagnostics, and that clearly show the role of graphene in theranostics, were included. Data extraction and quality assessment was made by reviewer pairings. Fifty-five studies met the inclusion criteria, but they were too heterogeneous to combine in statistical meta-analysis. Critical analysis and discussion of the selected papers are presented.

12.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384433

RESUMEN

Diclofenac (DCF), the most widely consumed non-steroidal anti-inflammatory drug (NSAID) worldwide, is associated with adverse typical effects, including gastrointestinal (GI) complications. The present study aims to better understand the topical toxicity induced by DCF using membrane models that mimic the physiological, biophysical, and chemical environments of GI mucosa segments. For this purpose, phospholipidic model systems that mimic the GI protective lining and lipid models of the inner mitochondrial membrane were used together with a wide set of techniques: derivative spectrophotometry to evaluate drug distribution at the membrane; steady-state and time-resolved fluorescence to predict drug location at the membrane; fluorescence anisotropy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and calcein leakage studies to evaluate the drug-induced disturbance on membrane microviscosity and permeability; and small- and wide-angle X-ray scattering studies (SAXS and WAXS, respectively), to evaluate the effects of DCF at the membrane structure. Results demonstrated that DCF interacts chemically with the phospholipids of the GI protective barrier in a pH-dependent manner and confirmed the DCF location at the lipid headgroup region, as well as DCF's higher distribution at mitochondrial membrane contact points where the impairment of biophysical properties is consistent with the uncoupling effects reported for this drug.


Asunto(s)
Diclofenaco/efectos adversos , Mucosa Gástrica , Mucosa Intestinal , Modelos Biológicos , Fosfolípidos , Biofisica , Diclofenaco/farmacología , Fluoresceínas/química , Fluoresceínas/metabolismo , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Fosfolípidos/química , Fosfolípidos/metabolismo
13.
Curr Pharm Des ; 23(40): 6160-6181, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28982321

RESUMEN

Despite the value of vaccination, the control of re-emerging infectious and non-infectious diseases remains a challenge for researchers. In this topic, mucosal immunization, in particular at airway mucosa, is receiving increased investigational focus. Innovative vaccine platforms to deliver immunogens with or without adjuvants in a safe and stable manner have been explored to improve vaccine efficacy and induce long-term and protective immunity. This review provides an overview of the features of respiratory immunization and the fate of inhalable nanocarriers in the respiratory tract. The review also highlights the most representative delivery approaches based on inhalable nanocarriers, including polymeric, lipid and inorganic-based nanosystems, which can enhance vaccine uptake by antigen-presenting cells. The review takes into consideration the most relevant and recent in vivo studies to provide readers a realistic insight into the potential of these technologies in the advantages and potential hurdles to clinical and commercial success of these platforms for vaccination.


Asunto(s)
Nanopartículas/química , Infecciones del Sistema Respiratorio/inmunología , Vacunas/inmunología , Animales , Portadores de Fármacos/química , Humanos , Vacunas/química
14.
Mol Ecol Resour ; 17(5): 904-914, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27987263

RESUMEN

Understanding the geographical distribution and community composition of species is crucial to monitor species persistence and define effective conservation strategies. Environmental DNA (eDNA) has emerged as a powerful noninvasive tool for species detection. However, most eDNA survey methods have been developed and applied in temperate zones. We tested the feasibility of using eDNA to survey anurans in tropical streams in the Brazilian Atlantic forest and compared the results with short-term visual and audio surveys. We detected all nine species known to inhabit our focal streams with one single visit for eDNA sampling. We found a higher proportion of sequence reads and larger number of positive PCR replicates for more common species and for those with life cycles closely associated with the streams, factors that may contribute to increased release of DNA in the water. However, less common species were also detected in eDNA samples, demonstrating the detection power of this method. Filtering larger volumes of water resulted in a higher probability of detection. Our data also show it is important to sample multiple sites along streams, particularly for detection of target species with lower population densities. For the three focal species in our study, the eDNA metabarcoding method had a greater capacity of detection per sampling event than our rapid field surveys, and thus, has the potential to circumvent some of the challenges associated with traditional approaches. Our results underscore the utility of eDNA metabarcoding as an efficient method to survey anuran species in tropical streams of the highly biodiverse Brazilian Atlantic forest.


Asunto(s)
Anuros/clasificación , Anuros/genética , Código de Barras del ADN Taxonómico/métodos , Metagenómica/métodos , Animales , Brasil , ADN/química , ADN/genética , ADN/aislamiento & purificación , Bosques , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , Clima Tropical , Agua/química
15.
Int J Pharm ; 510(1): 144-58, 2016 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-27173823

RESUMEN

In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.


Asunto(s)
Antibacterianos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Vaciamiento Gástrico/efectos de los fármacos , Fármacos Gastrointestinales/administración & dosificación , Estómago/efectos de los fármacos , Administración Oral , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/tendencias , Vaciamiento Gástrico/fisiología , Mucosa Gástrica/metabolismo , Fármacos Gastrointestinales/química , Fármacos Gastrointestinales/metabolismo , Humanos
16.
Curr Pharm Biotechnol ; 16(11): 955-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26278524

RESUMEN

Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.


Asunto(s)
Biofarmacia/métodos , Dendrímeros/química , Liposomas/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Humanos , Micelas
17.
Curr Pharm Biotechnol ; 16(11): 940-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26238678

RESUMEN

Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.


Asunto(s)
Biofarmacia/métodos , Nanopartículas/química , Animales , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Humanos , Lípidos/química , Polímeros/química
19.
Curr Drug Deliv ; 12(4): 382-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25895551

RESUMEN

Anti-allergic agents are used to treat a great variety of diseases which usually involve an inflammation reaction. These compounds act by inhibiting the release and the effects of inflammatory mediators (e.g. histamine) in the target tissue. The purpose of anti-allergy therapy is to deliver the drug to its local of action in a therapeutic concentration, minimizing the undesired side effects. In order to solve some of the anti-allergic agents' physicochemical drawbacks and the limitations associated to conventional pharmaceutical formulations (e.g. poor solubility and absorption, skin permeation, stability), novel drug delivery systems, such as cyclodextrins, liposomes, micelles, microemulsions, nano and microparticles, have been developed. Depending on the allergic condition, several administration routes are used to deliver anti-allergic agents, each with its own disadvantages to overcome. In the literature, there are a vast number of papers concerning novel delivery systems for anti-allergic agents, making it difficult to evaluate the information and the promising outcomes. The aim of the present review article is to compile the recent (i.e. in the new millennium) improvements of novel drug delivery technology focusing on the achievement of anti-allergic therapeutic delivery. The potential intrinsic benefits of these systems will reflect an increased therapeutic adherence and better patients' life quality. A critical prospect of future clinical trial directions will also be discussed.


Asunto(s)
Antialérgicos/administración & dosificación , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Antialérgicos/química , Química Farmacéutica , Difusión de Innovaciones , Formas de Dosificación , Vías de Administración de Medicamentos , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Tecnología Farmacéutica/métodos
20.
Curr Drug Metab ; 16(1): 3-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25828594

RESUMEN

Nucleic acids (NA) therapies, including therapy with genes, aptamers or antisense oligonucleotides, have been showing promising results, especially in the treatment of severe diseases (e.g. cancer and AIDS). Nevertheless, the full success of medical treatments requires efficient achievement of the therapeutic target and also the safety and effectiveness of the pharmaceutical system. NA are not very efficient when administered alone, which means that the use of appropriate methods for in vivo transfection of these molecules into targeted cells is fundamental. Examples of these techniques are the use of viral and non-viral vectors to transfer the NA to the cells nucleus. Despite viral vectors have been demonstrating superior effectiveness for NA transfer, some drawbacks have been pointed out, which focused the research in the non-viral vectors. However, the development of effective NA delivery systems remains a challenge for pharmaceutical technologists, mainly because of their in vivo failure, which hinders their clinical application. In this review article we address the characteristics of NA molecules and their respective limitations for formulation and administration. An update on the state of the art related to the latest and outstanding developments from the in vivo applications of NA viral and non-viral delivery systems is also presented. From this review, we can conclude that there is a lack of research regarding pre-clinical studies in specific animal models of disease, which is required for further human clinical trials and for their use in clinics.


Asunto(s)
Ácidos Nucleicos/administración & dosificación , Animales , Vectores Genéticos , Humanos , Ácidos Nucleicos/química , Tecnología Farmacéutica , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...