Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37947315

RESUMEN

OBJECTIVES: Neutrophils play a key role in ANCA-associated vasculitis, both as targets of autoimmunity and facilitators of vascular damage. In granulomatosis with polyangiitis (GPA), data regarding the production of reactive oxygen species (ROS) in neutrophils are unclear. Further, recent data suggests that ROS production could have an anti-inflammatory effect through the regulation of the inflammasome and IL-1-related cytokines. We aimed to analyse the ROS production in neutrophils from patients with GPA and investigate its association with IL-1-related cytokines and the autoantigen proteinase 3 (PR3). METHODS: Seventy-two GPA patients with disease flare were included in the NEUTROVASC prospective cohort study. ROS production was evaluated in whole blood of patients with active GPA and compared with the same patients in remission or healthy controls. Associations between ROS production, PR3 membrane expression on neutrophils, serum levels of IL-1-related cytokines as well as inflammasome-related proteins were analyzed. RESULTS: We observed a robust defect in ROS production by neutrophils from patients with active GPA compared with healthy controls, independent of glucocorticoid treatment. Serum levels of IL-1-related cytokines were significantly increased in GPA patients, particularly in patients with kidney involvement, and levels of these cytokines returned to normal after patients achieved remission. Further, inflammasome-related proteins were significantly dysregulated in the cytosol of neutrophils as well as the serum from GPA patients. CONCLUSION: Our data suggests that ROS production and regulation of the inflammasome in neutrophils from patients with GPA are disturbed and may be a potential therapeutic target. CLINICAL TRIAL REGISTRATION NUMBER: NCT01862068, clinicaltrials.gov, https://www.clinicaltrials.gov.

2.
Nat Commun ; 14(1): 469, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709329

RESUMEN

The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.


Asunto(s)
Respuesta al Choque Térmico , Solanum lycopersicum , Respuesta al Choque Térmico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica , Cromatina/genética , Solanum lycopersicum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...