Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1357: 43-82, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583640

RESUMEN

The extensive knowledge in the miniemulsion technique used in biocatalysis applications by the authors allowed the development of drug delivery systems that constitutes the LipNanoCar technology core for the production of lipid nanoemulsions and solid lipid nanoparticles. The LipNanoCar technology, together with adequate formulations of different oils, fatty acids, surfactants, and temperature, allows the entrapment of several bioactive and therapeutic compounds in lipid nanoparticles for cosmetic, nutrition, and pharmaceutical applications.The LIpNanoCar technology allowed lipid nanoparticles production with average sizes ranging from 100 to 300 nm and Zeta Potentials between -55 and -20 mV. Concomitantly, high entrapment or encapsulation efficiencies (%EE) were achieved, as illustrated in this work for ß-carotene and vitamins derivatives (>85%) for cosmetic application, and for antibiotics currently used in chemotherapy, like rifampicin (69-85%) and pyrazinamide (14-29%) against Mycobacterium tuberculosis (TB), and ciprofloxacin (>65%) and tobramycin (~100%) in Cystic Fibrosis (CF) respiratory infections therapy. Ciprofloxacin presented, for example, a quick-release from the lipid nanoparticles using a dialysis tubing (96% in the first 7 h), but slower than the free antibiotic (95% in the first 3 h). This result suggests that ciprofloxacin is loaded near the external surface of the lipid nanoparticles.The toxicity and validation of entrapment of antibiotics in lipid nanoparticles for Cystic Fibrosis therapy were assessed using Caenorhabditis elegans as an animal model of bacterial infection. Fluorescence microscopy of an entrapped fluorescent dye (DiOC) confirmed the uptake of the lipid nanoparticles by ingestion, and their efficacy was successfully tested in C. elegans. Burkholderia contaminans IST408 and Burkholderia cenocepacia K56-2 infections were tested as model bacterial pathogens difficult to eradicate in Cystic Fibrosis respiratory diseases.


Asunto(s)
Fibrosis Quística , Nanopartículas , Infecciones por Pseudomonas , Animales , Antibacterianos/uso terapéutico , Caenorhabditis elegans , Ciprofloxacina/uso terapéutico , Fibrosis Quística/microbiología , Liposomas , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...