Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710582

RESUMEN

AIMS: This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS: Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS: The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.


Asunto(s)
Acuicultura , Artemia , Bacteriófagos , Vibrio alginolyticus , Vibrio alginolyticus/virología , Animales , Artemia/microbiología , Artemia/virología , Alimentación Animal , Agua de Mar/microbiología , Larva/microbiología
2.
Sci Total Environ ; 932: 172868, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38714257

RESUMEN

The use of bioplastics (e.g., polyhydroxybutyrate) emerged as a solution to help reduce plastic pollution caused by conventional plastics. Nevertheless, bioplastics share many characteristics with their conventional counterparts, such as degradation to nano-sized particles and the ability to sorb environmental pollutants, like metals. This study aimed to assess the potential impacts of the interaction of metals (cadmium - Cd, copper - Cu, and zinc - Zn) with polyhydroxybutyrate nanoplastics (PHB-NPLs; ~200 nm) on the freshwater cnidarian Hydra viridissima in terms of mortality rates, morphological alterations, and feeding behavior. The metal concentrations selected for the combined exposures corresponded to concentrations causing 20 %, 50 %, and 80 % of mortality (LC20, LC50, and LC80, respectively) and the PHB-NPLs concentrations ranged from 0.01 to 1000 µg/L. H. viridissima sensitivity to the metals, based on the LC50's, can be ordered as: Zn < Cd < Cu. Combined exposure to metals and PHB-NPLs yielded distinct outcomes concerning mortality, morphological changes, and feeding behavior, uncovering metal- and dose-specific responses. The interaction between Cd-LCx and PHB-NPLs progressed from no effect at LC20,96h to an ameliorative effect at Cd-LC50,96h. Cu-LCx revealed potential mitigation effects (LC20,96h and LC50,96h) but at Cu-LC80,96h the response shifts to a potentiating effect. For Zn-LCx, response patterns across the combinations with PHB-NPLs were like those induced by the metal alone. PHB-NPLs emerged as a key factor capable of modulating the toxicity of metals. This study highlights the context-dependent interactions between metals and PHB-NPLs in freshwater environments while supporting the need for further investigation of the underlying mechanisms and ecological consequences in forthcoming research.


Asunto(s)
Hydra , Nanopartículas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Hydra/efectos de los fármacos , Hidroxibutiratos/toxicidad , Poliésteres , Metales Pesados/toxicidad
3.
Antibiotics (Basel) ; 13(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38391506

RESUMEN

The rapid emergence of antimicrobial resistance is a global concern, and high levels of resistance have been detected in chicken populations worldwide. The purpose of this study was to determine the prevalence of antimicrobial resistance in Escherichia coli and Salmonella spp. isolated from healthy chickens in Timor-Leste. Through a cross-sectional study, cloacal swabs and boot swabs were collected from 25 live bird markets and two layer farms respectively. E. coli and Salmonella spp. from these samples were tested for susceptibility to six antimicrobials using a disk diffusion test, and a subset was tested for susceptibility to 27 antimicrobials using broth-based microdilution. E. coli and Salmonella spp. isolates showed the highest resistance towards either tetracycline or ampicillin on the disk diffusion test. E. coli from layer farms (odds ratio:5.2; 95%CI 2.0-13.1) and broilers (odds ratio:18.1; 95%CI 5.3-61.2) were more likely to be multi-drug resistant than those from local chickens. Based on the broth-based microdilution test, resistance to antimicrobials in the Timor-Leste Antimicrobial Guidelines for humans were low, except for resistance to ciprofloxacin in Salmonella spp. (47.1%). Colistin resistance in E. coli was 6.6%. Although this study shows that antimicrobial resistance in chickens was generally low in Timor-Leste, there should be ongoing monitoring in commercial chickens as industry growth might be accompanied with increased antimicrobial use.

4.
Sci Total Environ ; 917: 170282, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38272078

RESUMEN

The accumulation of increasingly smaller plastic particles in aquatic ecosystems is a prominent environmental issue and is causing a significant impact on aquatic biota. In response to this challenge, biodegradable plastics have emerged as a potential ecological alternative. Nevertheless, despite recent progress in polymer toxicology, there is still limited understanding of the ecological implications of biodegradable plastics in freshwater ecosystems. This study evaluated the toxicity of polyhydroxybutyrate nano-sized particles (PHB-NPLs) on the freshwater cnidarian Hydra viridissima assessing individual and population-level effects. Data revealed low toxicity of PHB-NPLs to H. viridissima in the short-term, as evidenced by the absence of significant malformations and mortality after the 96-h assays. In addition, hydras exhibited rapid and complete regeneration after 96 h of exposure to PHB-NPLs. Feeding assays revealed no significant alterations in prey consumption behavior in the 96-h mortality and malformations assay and the regeneration assay. However, significantly increased feeding rates were observed after long-term exposure, across all tested concentrations of PHB-NPLs. This increase may be attributed to the organisms' heightened energetic demand, stemming from prolonged activation of detoxification mechanisms. These changes may have a cascading effect within the food web, influencing community dynamics and ecosystem stability. Furthermore, a dose-dependent response on the hydras' populational growth was found, with an estimated 20 % effect concentration (EC20,8d) on this endpoint of 10.9 mg PHB-NPLs/L that suggests potential long-term impacts on the population's reproductive output and potential depression and local extinction upon long-term exposure to PHB-NPLs on H. viridissima. The obtained data emphasizes the importance of evaluating sublethal effects and supports the adoption of long-term assays when assessing the toxicity of novel polymers, providing crucial data for informed regulation to safeguard freshwater ecosystems. Future research should aim to unravel the underlying mechanisms behind these sublethal effects, as well as the impact of the generated degradation products.


Asunto(s)
Plásticos Biodegradables , Cnidarios , Hydra , Contaminantes Químicos del Agua , Animales , Hydra/fisiología , Ecosistema , Polihidroxibutiratos , Agua Dulce , Polímeros , Contaminantes Químicos del Agua/toxicidad , Plásticos
5.
Sci Total Environ ; 917: 170405, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280602

RESUMEN

The functional conservation of important selective serotonin reuptake inhibitor (SSRI) targets in non-target organisms raises concerns about their potential adverse effects on the ecosystems. Although the environmental levels of SSRIs like paroxetine (PAR) have risen, the knowledge regarding the effects of long-term exposure to PAR is limited. This study investigated the impact of sub-chronic exposure (21 days) to two sub-lethal concentrations of PAR (40 and 400 µg/L) on the behaviour of adult zebrafish in different scenarios: basal activity (under dark and light conditions), stress response (evoked by sudden light transitions) and stress response recovery. A new framework was employed for the integrative study of fish's swimming performance based on their innate ability to respond to light shifts. Several swimming-associated parameters (e.g., total swimming distance, time of inactivity, swimming angles) and thigmotaxis were monitored for an integrated analysis in each scenario. Data revealed reduced swimming activity, impaired behavioural response to stress and alterations in stress recovery of PAR-exposed fish. An anxiolytic effect was particularly noticeable in fish basal swimming activity in the dark at 400 µg/L and in the behavioural response to stress (from dark to light) and stress recovery (from light to dark) for organisms exposed to 40 µg/L. The detected PAR-induced behavioural modifications suggest a disruption of brain glucocorticoid signalling that may have implications at the individual level (e.g., changing behavioural responses to predators), with potential repercussions on the population and community levels. Therefore, the applied protocol proved sensitive in detecting behavioural changes induced by PAR.


Asunto(s)
Paroxetina , Contaminantes Químicos del Agua , Animales , Paroxetina/toxicidad , Pez Cebra , Ecosistema , Conducta Animal , Inhibidores Selectivos de la Recaptación de Serotonina , Natación , Contaminantes Químicos del Agua/toxicidad
6.
Aquat Toxicol ; 264: 106726, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806024

RESUMEN

Basamid® is a fumigant nematicide and fungicide known to break down in several volatile compounds, mainly methyl isothiocyanate (MITC), when in contact with water. Soil abiotic parameters, such as pH, influences this breakdown process, and thus, the toxic effects of Basamid® to aquatic biota. This work studied the influence of soil pH (5.5, 6.5 and 7.5) on the toxicity of eluates (1:4, m:v), obtained from Basamid®-contaminated soils (with the recommended dose of 145 mg of dazomet/Kg of soil), on two primary consumers: Daphnia magna and Brachionus calyciflorus. For this, lethal and sublethal toxicity of eluates originated from soils at pH 5.5, 6.5 and 7.5, contaminated with Basamid® (Ba-E 5.5; 6.5 and 7.5, respectively), were assessed (dilutions between 0.096 - 100%). The LD50,24h of Basamid® eluates for D. magna varied from 3.07% to 7.82% (Ba-E 6.5 and Ba-E 5.5 respectively), while for B. calyciflorus varied from 18.1% to 84.7% (Ba-E 6.5 and Ba-E 7.5, respectively). Both species were less sensitive to Basamid® eluates originated from soils with pH 7.5 and more sensitive to those obtained from soils with pH 6.5. Regarding the sublethal effects, a lower soil pH was associated with a higher toxicity of Basamid® to D. magna reproduction (LOED: 0.125% Ba-E 5.5), while for B. calyciflorus such a higher toxicity was observed at the highest soil pH (ED20: 7.42% [5.10-9.74] at Ba-E 7.5). These results show a negative association between soil pH and the lethal toxicity of Basamid® contaminated eluates. However, such a pattern was not observed at sublethal level, at which a species dependency was observed regarding the influence of soil pH in the observed toxicity. Nevertheless, it is to highlight that very low concentrations of eluates (as 3.07%) caused significant mortality, indicating a high risk for freshwater biota. Considering that Basamid® is likely to reach the aquatic systems is real, for which reason the recommended dose must be reviewed at environmentally-relevant scenarios.


Asunto(s)
Plaguicidas , Rotíferos , Contaminantes Químicos del Agua , Animales , Suelo/química , Contaminantes Químicos del Agua/toxicidad , Plaguicidas/farmacología , Concentración de Iones de Hidrógeno , Daphnia
7.
Chemosphere ; 344: 140373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806324

RESUMEN

The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 µg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 µg/L for both ibuprofen and irgarol and 500 µg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 µg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 µg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Ibuprofeno/toxicidad , Ecosistema , Triazinas/análisis , Larva , Contaminantes Químicos del Agua/análisis , Embrión no Mamífero
8.
Environ Pollut ; 334: 122126, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390916

RESUMEN

The risk assessment of freshwater salinization is constructed around standard assays and using sodium chloride (NaCl), neglecting that the stressor is most likely a complex mixture of ions and the possibility of prior contact with it, triggering acclimation mechanisms in the freshwater biota. To date, as far as we are aware of, no information has been generated integrating both acclimation and avoidance behavior in the context of salinization, that may allow these risk assessments upgrading. Accordingly, 6-days-old Danio rerio larvae were selected to perform 12-h avoidance assays in a non-confined 6-compartment linear system to simulate conductivity gradients using seawater (SW) and the chloride salts MgCl2, KCl, and CaCl2. Salinity gradients were established from conductivities known to cause 50% egg mortality in a 96-h exposure (LC50,96h,embryo). The triggering of acclimation processes, which could influence organisms' avoidance-selection under the conductivity gradients, was also studied using larvae pre-exposed to lethal levels of each salt or SW. Median avoidance conductivities after a 12-h of exposure (AC50,12h), and the Population Immediate Decline (PID) were computed. All non-pre-exposed larvae were able to detect and flee from conductivities corresponding to the LC50,96h,embryo, selecting compartments with lower conductivities, except for KCl. The AC50,12h and LC50,96h overlapped for MgCl2 and CaCl2, though the former is considered as more sensitive as it was obtained in 12 h of exposure. The AC50,12h for SW was 1.83-fold lower than the LC50,96h, thus, reinforcing the higher sensitivity of the parameter ACx and its adequacy for risk assessment frameworks. The PID, at low conductivities, was solely explained by the avoidance behavior of non-pre-exposed larvae. Larvae pre-exposed to lethal levels of salt or SW were found to select higher conductivities, except for MgCl2. Results indicated that avoidance-selection assays are ecologically relevant and sensitive tools to be used in risk assessment processes. Stressor pre-exposure influenced organisms' avoidance-selection behavior under conductivity gradients, suggesting that under salinization events organisms may acclimate, remaining in altered habitats.


Asunto(s)
Cloruros , Contaminantes Químicos del Agua , Animales , Cloruros/toxicidad , Pez Cebra , Sales (Química) , Reacción de Prevención , Larva , Cloruro de Calcio , Cloruro de Sodio/toxicidad , Agua de Mar , Contaminantes Químicos del Agua/toxicidad
9.
Toxics ; 11(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37368605

RESUMEN

People spend most of their time indoors, particularly in their houses where daily activities are carried out, enhancing particulate matter (PM) emissions with consequent adverse health impacts. This study intended to appraise the toxicological and mutagenic responses of particulate matter with a diameter less than 10 µm (PM10) released from cooking and ironing activities under different conditions. The cytotoxicity of the PM10 total organic extracts was tested in A549 cells using the WST-8 and the lactate dehydrogenase (LDH) assays, while the interference in cell cycle dynamics and reactive oxygen species (ROS) production was analysed by flow cytometry. The S. typhimurium TA98 and TA100 Ames tester strains with and without metabolic activation were employed to determine the mutagenic potential of the PM10-bound polycyclic aromatic hydrocarbons (PAHs). PM10 organic extracts decreased the metabolic activity of A549 cells; however, no effects in the LDH release were observed. An increase in ROS levels was registered only for cells treated with PM10 at IC20 from steam ironing, in low ventilation conditions, while cell cycle dynamics was only affected by exposure to PM10 at IC20 from frying horse mackerel and grilling boneless pork strips. No mutagenic effects were observed for all the PM10-bound PAHs samples.

11.
Aquat Toxicol ; 259: 106548, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37130483

RESUMEN

Various types of nanoparticles (NPs) have been widely investigated recently and applied in areas such as industry, the energy sector, and medicine, presenting the risk of their release into the environment. The ecotoxicity of NPs depends on several factors such as their shape and surface chemistry. Polyethylene glycol (PEG) is one of the most often used compounds for functionalisation of NP surfaces, and its presence on the surfaces of NPs may affect their ecotoxicity. Therefore, the present study aimed to assess the influence of PEG modification on the toxicity of NPs. As biological model, we chose freshwater microalgae, a macrophyte and invertebrates, which to a considerable extent enable the assessment of the harmfulness of NPs to freshwater biota. SrF2:Yb3+,Er3+ NPs were used to represent the broad group of up-converting NPs, which have been intensively investigated for medical applications. We quantified the effects of the NPs on five freshwater species representing three trophic levels: the green microalgae Raphidocelis subcapitata and Chlorella vulgaris, the macrophyte Lemna minor, the cladoceran Daphnia magna and the cnidarian Hydra viridissima. Overall, H. viridissima was the most sensitive species to NPs, which affected its survival and feeding rate. In this case, PEG-modified NPs were slightly more toxic than bare ones (non-significant results). No effects were observed on the other species exposed to the two NPs at the tested concentrations. The tested NPs were successfully imaged in the body of D. magna using confocal microscopy; both NPs were detected in the D. magna gut. The results obtained reveal that SrF2:Yb3+,Er3+ NPs can be toxic to some aquatic species; however, the structures have low toxicity effects for most of the tested species.


Asunto(s)
Chlorella vulgaris , Elementos de la Serie de los Lantanoides , Nanopartículas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Elementos de la Serie de los Lantanoides/farmacología , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Daphnia
12.
Sci Total Environ ; 883: 163447, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37094675

RESUMEN

Mismanaged plastic litter submitted to environmental conditions may breakdown into smaller fragments, eventually reaching nano-scale particles (nanoplastics, NPLs). In this study, pristine beads of four different types of polymers, three oil-based (polypropylene, PP; polystyrene, PS; and low-density polyethylene, LDPE) and one bio-based (polylactic acid, PLA) were mechanically broken down to obtain more environmentally realistic NPLs and its toxicity to two freshwater secondary consumers was assessed. Thus, effects on the cnidarian Hydra viridissima (mortality, morphology, regeneration ability, and feeding behavior) and the fish Danio rerio (mortality, morphological alterations, and swimming behavior) were tested at NPLs concentrations in the 0.001 to 100 mg/L range. Mortality and several morphological alterations were observed on hydras exposed to 10 and 100 mg/L PP and 100 mg/L LDPE, whilst regeneration capacity was overall accelerated. The locomotory activity of D. rerio larvae was affected by NPLs (decreased swimming time, distance or turning frequency) at environmentally realistic concentrations (as low as 0.001 mg/L). Overall, petroleum- and bio-based NPLs elicited pernicious effects on tested model organisms, especially PP, LDPE and PLA. Data allowed the estimation of NPLs effective concentrations and showed that biopolymers may also induce relevant toxic effects.


Asunto(s)
Hydra , Petróleo , Contaminantes Químicos del Agua , Animales , Polímeros/toxicidad , Organismos Acuáticos/metabolismo , Polietileno , Microplásticos , Petróleo/toxicidad , Poliestirenos/toxicidad , Plásticos/toxicidad , Biopolímeros/toxicidad , Pez Cebra/metabolismo , Poliésteres/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
13.
Environ Sci Pollut Res Int ; 30(20): 58841-58854, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36997780

RESUMEN

Capecitabine (CAP, prodrug) and 5-fluorouracil (5-FU, its active metabolite) are two of the most prominent cytostatics, for which no clear picture can be drawn regarding potential concentrations of effect for freshwater biota, with CAP being grouped in the least studied cytostatic, whereas 5-FU has been classified as of no and of high environmental risk. Accordingly, the present work aimed to assess the ecotoxicity of CAP and 5-FU in three freshwater species, which included a 72-h assay with the producer Raphidocelis subcapitata; a 96-h assay with the invertebrate secondary consumer Hydra viridissima; and a 96-h assay with embryos of the vertebrate secondary consumer Danio rerio. The following endpoints were monitored: yield and population growth rate for the algae; mortality, morphological alterations, and post-exposure feeding rates for the cnidarian; and mortality, hatching, and malformations for the fish. Overall, organisms' sensitivity to CAP decreased in the following order: R. subcapitata > H. viridissima > D. rerio, whereas for 5-FU, it decreased in the following order: H. viridissima > D. rerio > R. subcapitata. For CAP, no median lethal effective concentrations (LC/EC50) were possible to compute for D. rerio, with no significant mortality or malformations registered in embryos exposed at concentrations up to 800 mg L-1. For R. subcapitata, the EC50s were 0.077 and 0.63 mg L-1 for yield and growth rate, respectively, and for H. viridissima, the EC50,30 min for feeding was 22.0 mg L-1. For 5-FU, no EC50s could be computed for R. subcapitata, whilst the EC50s for H. viridissima mortality and feeding were 55.4 and 67.9 mg L-1, respectively, and for D. rerio, the LC50,96 h and EC50,96 h (hatching and abnormalities) were 4546, 4100, and 2459 mg L-1, respectively. Assuming similar modes of action for both compounds and their co-occurrence, the combined risk quotient of the two chemicals was determined to be 7.97, which represents a risk for freshwater biota. Anticipating the increased consumption of these compounds and cancer development trends worldwide, these impacts may be further aggravated.


Asunto(s)
Chlorophyceae , Contaminantes Químicos del Agua , Animales , Capecitabina/metabolismo , Capecitabina/farmacología , Pez Cebra/metabolismo , Fluorouracilo , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
14.
Artículo en Inglés | MEDLINE | ID: mdl-36767106

RESUMEN

The effects of salinization on freshwater ecosystems have been estimated by testing sodium chloride (NaCl) since it is the most widely used salt as a deicing agent and Na+ and Cl- ions are the most representative in seawater composition. However, calcium, magnesium, and/or potassium are starting to be proposed as potential surrogates for NaCl, but for which ecotoxicological effects are less explored. This study aimed to identify (i) the less toxic salt to freshwater biota to be suggested as a safer alternative deicer and (ii) to contribute to the lower tiers of salinity risk assessment frameworks by identifying a more suitable surrogate salt than NaCl. The battery of ecotoxicity assays with five key trophic level species showed that among the tested salts (MgCl2, CaCl2, and KCl), KCl and CaCl2 seemed to induce the highest and lowest toxicity, respectively, compared with NaCl. CaCl2 is suggested as a safer alternative for use as a deicer and KCl as a surrogate for the risk assessment of seawater intrusion in coastal regions. These results enrich the salt toxicity database aiming to identify and propose more suitable surrogate salts to predict the effects of salinization to a broader extent.


Asunto(s)
Sales (Química) , Cloruro de Sodio , Cloruro de Sodio/toxicidad , Ecosistema , Cloruro de Calcio/toxicidad , Salinidad , Agua Dulce , Cationes , Biota
15.
Sci Total Environ ; 868: 161640, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36669666

RESUMEN

Agrochemicals are mostly used to deplete pests and treat diseases in terrestrial agro-ecosystems. However, their transport through the soil, by leaching and/or runoff, may cause them to reach aquatic systems. Environmental parameters, such as soil pH, can affect this transport, by influencing the magnitude of agrochemicals degradation and chemical reaction. This work aimed at investigating the influence of soil pH on the toxicity of eluates obtained from Basamid® contaminated soils to Hydra viridissima, Xenopus laevis and Danio rerio. For this, a natural soil with pH amended to 5.5, 6.5 and 7.5, was spiked with the recommended dose (RD) of Basamid® (145 mg dazomet/kg soil) and eluates (Ba-E) were prepared with the respective species culture medium. Dilutions of the eluates (0.14-100%), obtained from the three soils (Ba-E 5.5, Ba-E 6.5 and Ba-E 7.5, corresponding to soil spiked with Basamid® RD at soil pH of 5.5, 6.5 and 7.5, respectively), were used to expose the organisms. Results showed that for H. viridissima increased soil alkalinity provoked less mortality comparatively to lower soil pH [LD50,96h of Ba-E 5.5: 10.6% and LD50,96h of Ba-E 7.5: 21.2%]. As for X. laevis and D. rerio Ba-E lethal ecotoxicity was similar across soil pH (LD50,96h varied from 5.7 to 6.9% and from 2.1 to 4.3%, respectively). For malformations, 20% effect dilution (ED) in H. viridissima was significantly higher at Ba-E 7.5 (ED20,96h: 17.4%), comparatively to Ba-E 5.5 and Ba-E 6.5 (ED20,96h: 7.9% and 7.7%, respectively). From the three tested organisms and based on both lethal and sublethal effects, H. viridissima presented the highest tolerance to Basamid® eluates and soil pH was a major factor determining the fumigant toxicity, with higher soil pH levels inducing, lower toxicity. The eluates obtained from soils contaminated with RD of Basamid® induced severe effects to the three aquatic species.


Asunto(s)
Hydra , Plaguicidas , Contaminantes del Suelo , Animales , Pez Cebra/metabolismo , Xenopus laevis , Ecosistema , Suelo/química , Contaminantes del Suelo/metabolismo , Concentración de Iones de Hidrógeno
16.
Environ Sci Pollut Res Int ; 30(13): 39258-39271, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36598726

RESUMEN

The architecture of hydrophobically modified polymers can be tailored to produce variants with different levels of functionality. This allows industry to apply rational design methods for the development of more environmentally friendly materials. In the present work, the ecotoxicity of six variants of hydrophobically modified poly(acrylic) acids (HMPAA), obtained by changing the crosslinked conformation, insertion position, and length of the hydrophobic groups, was assessed for the (i) bioluminescence production of Aliivibrio fischeri; (ii) population growth rate of Raphidocelis subcapitata and Chlorella vulgaris; (iii) mortality of Brachionus calyciflorus; (iv) feeding inhibition, somatic growth rate, reproduction, and mortality of Daphnia magna; and (iv) mortality and somatic growth rate of Pelophylax perezi tadpoles. The concentrations causing 50% and 20% of effects (L(E)C50 and 20, respectively) ranged from 9.64 up to > 2000 mg·L-1 for all six HMPAA and species. The bacterium A. fischeri and tadpoles of P. perezi were the most sensitive and most tolerant organisms to the six tested HMPAA, respectively. The computed 5% hazard concentrations (computed on the basis of L(E)C50 s) showed that HMPAA1 (13.0 mg·L-1) and HMPAA2 (26.1 mg·L-1) were the most toxic variants, while HMPAA6 (233 mg·L-1) the least one. These results suggest HMPAA6 (with low crosslink percentage modified by the addition of long and short hydrophobic groups at the surface) to be the most environmentally friendly variant and should be preferentially considered to be used in consumer products, compared to the other five studied variants.


Asunto(s)
Chlorella vulgaris , Rotíferos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/farmacología , Ecotoxicología , Aliivibrio fischeri , Daphnia , Larva
17.
Sci Total Environ ; 859(Pt 1): 160165, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36379344

RESUMEN

Intensive agriculture along with the use of agrochemicals has been associated with low soil fertility, soil erosion, and soil acidity. Management of soil pH through liming is a common practice in agriculture to increase soil fertility and nutrient availability. When altering soil pH, different chemical reactions occur depending on soil composition and agrochemicals presence. Basamid® is a fumigant used worldwide targeting soil nematodes, fungi, and weeds in diverse crops, that can reach freshwater ecosystems by leaching through the soil layers. The major goal of this work was to assess the influence of soil pH in the toxicity of Basamid® eluates to the microalgae Raphidocelis subcapitata and the duckweed Lemna minor. For this, eluates were prepared from soils with different pH (5.5, 6.5 and 7.5), contaminated with the recommended dose of Basamid® corresponding to 145.7 mg of dazomet/Kg soil. Soil was amended with calcium carbonate (CaCO3). Raphidocelis subcapitata and L. minor were exposed to the eluates during 72 h and 7 days respectively, and multiple endpoints were assessed: growth rate, biomass, pigment as chlorophyl content and cell damage. Results showed that soil pH can influence the performance of the tested species and also be a major factor in influencing Basamid®'s toxicity. However, a clear pattern of the influence of soil pH on Basamid®'s toxicity was not observed and was species dependent. For R. subcapitata lower soil pHs induced higher toxicity of Basamid®'s to the algae [ED50 for growth rate: 30 % (confidence limits-CL: 22.8-37.2) for soil pH 5.5; >100 % for soil pH 6.5 and pH 7.5], while for L. minor the opposite was observed [ED50 for number of fronds: 27.2 % (CL: 22.8-31.6) for pH 5.5; 20.3 % (CL: 10.0-30.6) for pH 6.5 and 10.7 % (CL: 6.3-15.1)]. Overall, these results showed that leachates of Basamid® through soils, at recommended doses, can have a severe impact on aquatic systems, with or without the influence of abiotic factors.


Asunto(s)
Araceae , Microalgas , Suelo/química , Ecosistema , Agua Dulce/química
18.
Sci Total Environ ; 854: 158746, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116652

RESUMEN

Wildfires have been pointed out as an important source of diffuse contamination to aquatic ecosystems, namely through the input of toxic compounds such as polycyclic aromatic hydrocarbons and metals. However, amphibians' responses to this disturbance have been largely ignored. Hence, this study intended to assess how ashes from Pinus sp. and Eucalyptus sp. plantation forests affect tadpoles of Pelophylax perezi. Tadpoles were exposed 14 days to serial concentrations (26.9 %-100 %) of aqueous extracts of ashes (AEA, with 10 g L-1 of ashes) containing Eucalypt (ELS) and Pine (PLS) ashes. The following endpoints were measured: mortality, malformations, developmental stage, body length and weight. Effects at sub-individual level were also monitored for oxidative stress, neurotoxicity, and energetic metabolism. Chemical characterization of the AEA of ELS showed higher concentrations of As, Cd, Co, Cr, Pb and V, while PLS showed higher concentrations of Cu, Mn, Ni and Zn. Concerning the lethal effects of AEAs on tadpoles, both extracts were able to induce mortality at high concentrations (76.9 and/or 100 % of AEA), although a high variability in the response was found. A significant mortality in tadpoles exposed to ELS was observed at the concentration of 76.9 %. For organisms exposed to PLS, though a mortality above 20 % was registered at the two highest tested concentrations, it was not significantly different from the control. No significant sub-lethal effects were observed in the ELS treatments. Contrasting, exposure to PLS induced a decrease in body length, weight, glutathione-S-transferase activity and an increase in oxygen consumption. Overall, the distinct effects of ELS and PLS suggest an influence of vegetation cover in ash toxicity. In conclusion, exposure to both ash extracts negatively affected sublethal responses of tadpoles of P. perezi. Future research is needed to assess how these effects at individual level may translate into effects at population level.


Asunto(s)
Incendios Forestales , Animales , Ecosistema , Larva , Ranidae , Bosques , Agua/metabolismo
19.
Environ Sci Pollut Res Int ; 30(6): 15641-15654, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36169838

RESUMEN

Cytostatic drugs are one of the most important therapeutic options for cancer, a disease that is expected to affect 29 million individuals by 2040. After being excreted, cytostatics reach wastewater treatment plants (WWTPs), which are unable to efficiently remove them, and consequently, they will be released into the aquatic environment. Due to the highly toxic properties of cytostatics, it is particularly relevant to evaluate their potential ecological risk. Yet, cytostatics toxicity data is still not available for various species. In this work, the ecotoxicity of two widely consumed cytostatics, cyclophosphamide (CYP-as a model cytostatic) and mycophenolic acid (MPA-as a priority cytostatic), was evaluated on three freshwater species-Raphidocelis subcapitata, Brachionus calyciflorus, and Danio rerio, and the risk quotient (RQ) was assessed. Both drugs significantly affected the yield and growth inhibition of the microalgae, while for rotifers, the least sensitive species, only significant effects were registered for CYP. These drugs also caused significant effects on the mortality and morphological abnormalities on zebrafish. The estimation of the RQ discloses that CYP seems to pose a low risk to aquatic biota while MPA poses a very high risk. Altogether, these results emphasize the need for more complete environmental risk assessments, to properly prioritize and rank cytostatics according to their potentially toxic effects on the environment and aquatic biota.


Asunto(s)
Citostáticos , Rotíferos , Contaminantes Químicos del Agua , Animales , Citostáticos/toxicidad , Pez Cebra , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Ciclofosfamida/toxicidad
20.
Front Plant Sci ; 13: 1027608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340372

RESUMEN

Pollution of the environment with plastic is an important concern of the modern world. It is estimated that annually over 350 million tonnes of this material are produced, wherein, despite the recycling methods, a significant part is deposited in the environment. The plastic has been detected in the industrial areas, as well as farmlands and gardens in many world regions. Larger plastic pieces degraded in time into smaller pieces including microplastic (MP) and nanoplastic particles (NP). Nanoplastic is suggested to pose the most serious danger as due to the small size, it is effectively taken up from the environment by the biota and transported within the organisms. An increasing number of reports show that NP exert toxic effects also on plants. One of the most common plant response to abiotic stress factors is the accumulation of reactive oxygen species (ROS). On the one hand, these molecules are engaged in cellular signalling and regulation of genes expression. On the other hand, ROS in excess lead to oxidation and damage of various cellular compounds. This article reviews the impact of NP on plants, with special emphasis on the oxidative response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...