Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 904: 166893, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696409

RESUMEN

Seahorses are one of the most unique and enigmatic animals, recognized as flagship species for several conservation issues. Unfortunately, seahorses' populations have been declining and their unique lifestyle may constrain the ability of these animals to evolve in the future climate scenarios. They inhabit shallow coastal waters that display daily or seasonal environmental fluctuations. Yet, few studies have scrutinized the impacts of climate changes on these iconic species. Within this context, the objective of this work was to test the effects of an extreme hypoxia exposure (~27 % dissolved oxygen for approximately 7 h) on the metabolism, behaviour and food intake of the temperate seahorse Hippocampus hippocampus. Regarding metabolism, hypoxia exposure led to a significant reduction in metabolic rates and an increase in ventilation rates. Seahorses showed signs of movement lethargy under oxygen depletion. The results show that a small but extreme exposure to hypoxia is tolerable by seahorses despite inducing metabolic and behavioural changes, that may jeopardize the future development and survival of these iconic organisms.


Asunto(s)
Smegmamorpha , Animales , Hipoxia/veterinaria
2.
Toxins (Basel) ; 15(2)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36828471

RESUMEN

Marine heatwaves (MHWs) have doubled in frequency since the 1980s and are projected to be exacerbated during this century. MHWs have been shown to trigger harmful algal blooms (HABs), with severe consequences to marine life and human populations. Within this context, this study aims to understand, for the first time, how MHWs impact key biological and toxicological parameters of the paralytic shellfish toxin (PST) producer Gymnodinium catenatum, a dinoflagellate inhabiting temperate and tropical coastal waters. Two MHW were simulated-category I (i.e., peak: 19.9 °C) and category IV (i.e., peak: 24.1 °C)-relative to the estimated baseline in the western coast of Portugal (18.5 °C). No significant changes in abundance, size, and photosynthetic efficiency were observed among treatments. On the other hand, chain-formation was significantly reduced under category IV MHW, as was PSP toxicity and production of some PST compounds. Overall, this suggests that G. catenatum may have a high tolerance to MHWs. Nevertheless, some sublethal effects may have occurred since chain-formation was affected, suggesting that these growth conditions may be sub-optimal for this population. Our study suggests that the increase in frequency, intensity, and duration of MHWs may lead to reduced severity of G. catenatum blooms.


Asunto(s)
Dinoflagelados , Calor , Humanos , Saxitoxina/toxicidad , Toxinas Marinas , Mariscos
3.
Biology (Basel) ; 11(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36290328

RESUMEN

Toxin-producing microalgae present a significant environmental risk for ecosystems and human societies when they reach concentrations that affect other aquatic organisms or human health. Harmful algal blooms (HAB) have been linked to mass wildlife die-offs and human food poisoning episodes, and climate change has the potential to alter the frequency, magnitude, and geographical extent of such events. Thus, a framework of species distribution models (SDMs), employing MaxEnt modeling, was used to project changes in habitat suitability and distribution of three key paralytic shellfish toxin (PST)-producing dinoflagellate species (i.e., Alexandrium catenella, A. minutum, and Gymnodinium catenatum), up to 2050 and 2100, across four representative concentration pathway scenarios (RCP-2.6, 4.5, 6.0, and 8.5; CMIP5). Despite slightly different responses at the regional level, the global habitat suitability has decreased for all the species, leading to an overall contraction in their tropical and sub-tropical ranges, while considerable expansions are projected in higher latitudes, particularly in the Northern Hemisphere, suggesting poleward distributional shifts. Such trends were exacerbated with increasing RCP severity. Yet, further research is required, with a greater assemblage of environmental predictors and improved occurrence datasets, to gain a more holistic understanding of the potential impacts of climate change on PST-producing species.

4.
Toxins (Basel) ; 15(1)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36668829

RESUMEN

Harmful algal blooms (HABs) are considered one of the main risks for marine ecosystems and human health worldwide. Climate change is projected to induce significant changes in species geographic distribution, and, in this sense, it is paramount to accurately predict how it will affect toxin-producing microalgae. In this context, the present study was intended to project the potential biogeographical changes in habitat suitability and occurrence distribution of three key amnesic shellfish toxin (AST)-producing diatom species (i.e., Pseudo-nitzschia australis, P. seriata, and P. fraudulenta) under four different climate change scenarios (i.e., RCP-2.6, 4.5, 6.0, and 8.5) up to 2050 and 2100. For this purpose, we applied species distribution models (SDMs) using four abiotic predictors (i.e., sea surface temperature, salinity, current velocity, and bathymetry) in a MaxEnt framework. Overall, considerable contraction and potential extirpation were projected for all species at lower latitudes together with projected poleward expansions into higher latitudes, mainly in the northern hemisphere. The present study aims to contribute to the knowledge on the impacts of climate change on the biogeography of toxin-producing microalgae species while at the same time advising the correct environmental management of coastal habitats and ecosystems.


Asunto(s)
Diatomeas , Microalgas , Humanos , Cambio Climático , Ecosistema , Toxinas Marinas , Floraciones de Algas Nocivas , Mariscos/análisis
5.
Anim Cogn ; 24(1): 23-32, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32651650

RESUMEN

Learning can occur through self-experience with the environment, or through the observation of others. The latter allows for adaptive behaviour without trial-and-error, thus maximizing individual fitness. Perhaps given their mostly solitary lifestyle, cuttlefish have seldomly been tested under observational learning scenarios. Here we used a multi-treatment design to disentangle if and how neurally immature cuttlefish Sepia officinalis hatchlings (up to 5 days) incorporate social information into their decision-making, when performing a task where inhibition of predatory behaviour is learned. In the classical social learning treatment using pre-trained demonstrators, observers did not register any predatory behaviour. In the inhibition by social learning treatment, using naïve (or sham) demonstrators, more observers than demonstrators learned the task, while also reaching learning criterion in fewer trials, and performing less number of attacks per trial. Moreover, the performance of demonstrator-observer pairs was highly correlated, indicating that the mere presence of conspecifics did not explain our results by itself. Additionally, observers always reported higher latency time to attack during trials, a trend that was reversed in the positive controls. Lastly, pre-exposure to the stimulus did not improve learning rates. Our findings reveal the vicarious capacity of these invertebrate newborns to learn modulation (inhibition) of predatory behaviour, potentially through emulation (i.e. affordance learning). Despite ongoing changes on neural organization during early ontogeny, cognitively demanding forms of learning are already present in cuttlefish newborns, facilitating behavioural adaptation at a critical life stage, and potentially improving individual fitness in the environment.


Asunto(s)
Sepia , Aprendizaje Social , Animales , Decapodiformes , Inhibición Psicológica , Aprendizaje
6.
Mar Environ Res ; 133: 45-48, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29223596

RESUMEN

Domoic acid (DA) is a neurotoxin that causes degenerative damage to brain cells and induces permanent short-term memory loss in mammals. In cephalopod mollusks, although DA is known to accumulate primarily in the digestive gland, there is no knowledge whether DA reaches their central nervous system. Here we report, for the first time, the presence of DA in brain tissue of the common octopus (Octopus vulgaris) and the European cuttlefish (Sepia officinalis), and its absence in the brains of several squid species (Loligo vulgaris, L. forbesi and Todarodes sagittatus). We argue that such species-specific differences are related to their different life strategies (benthic/nektobenthic vs pelagic) and feeding ecologies, as squids mainly feed on pelagic fish, which are less prone to accumulate phycotoxins. Additionally, the temporal persistence of DA in octopus' brain reinforces the notion that these invertebrates can selectively retain this phycotoxin. This study shows that two highly-developed invertebrate species, with a complex central nervous system, where glutamatergic transmission is involved in vertebrate-like long-term potentiation (LTP), have the ability of retaining and possibly tolerating chronic exposure to DA, a potent neurotoxin usually acting at AMPA/kainate-like receptors. Here, we filled a gap of information on whether cephalopods accumulated this neurotoxin in brain tissue, however, further studies are needed to determine if these organisms are neurally or behaviourally impaired by DA.


Asunto(s)
Encéfalo/metabolismo , Decapodiformes/metabolismo , Ácido Kaínico/análogos & derivados , Toxinas Marinas/metabolismo , Octopodiformes/metabolismo , Animales , Monitoreo del Ambiente , Ácido Kaínico/metabolismo , Intoxicación por Mariscos
7.
Invert Neurosci ; 17(3): 8, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28620831

RESUMEN

Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the "working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU". The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing.


Asunto(s)
Anestesiología , Bienestar del Animal/normas , Biología , Cefalópodos , Educación Profesional/normas , Anestesiología/educación , Anestesiología/métodos , Anestesiología/normas , Animales , Biología/educación , Biología/métodos , Biología/normas , Unión Europea
8.
Chemosphere ; 135: 7-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25876030

RESUMEN

Increasing anthropogenic pressures in estuaries are responsible for the rise of contaminants in several compartments of these ecosystems. Species that benefit from the nursery services provided by estuaries are exposed to such contaminants (e.g. metals and metalloids). It is therefore relevant to understand if marine invertebrates that use these areas as spawning grounds accumulate contaminants in their tissues throughout embryogenesis. This study aimed to quantify As, Co, Cr, Cu, Mn, Ni, Se, Pb, V and Zn concentrations in both capsule and embryos of the common cuttlefish (Sepia officinalis) in Sado Estuary (Portugal). Moreover, embryos at their initial, intermediate and final stage of development were collected in sites subjected to different anthropogenic pressures. In general, the capsule accumulated higher element concentration throughout embryogenesis which indicates that the capsule acts as an effective barrier against contaminants uptake by the embryo. Although the capsule becomes thinner throughout embryogenesis, embryo's protection does not seem to be compromised at later development stages. Additionally, the higher concentrations of As, Cu, Se and Zn in the embryo in comparison to the capsule suggests important biological roles during the embryogenesis of this cephalopod mollusc.


Asunto(s)
Decapodiformes/fisiología , Contaminantes del Agua/toxicidad , Animales , Monitoreo del Ambiente , Metales , Portugal , Sepia
9.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25209942

RESUMEN

Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species.


Asunto(s)
Cambio Climático , Agua de Mar/química , Tiburones/genética , Aclimatación , Animales , Calentamiento Global , Concentración de Iones de Hidrógeno , Océanos y Mares , Tiburones/embriología , Tiburones/fisiología , Clima Tropical
10.
Artículo en Inglés | MEDLINE | ID: mdl-24835486

RESUMEN

Both climate change and biological invasions are among the most serious global environmental threats. Yet mechanisms underlying these eventual interactions remain unclear. The aim of this study was to undertake a comprehensive examination of the physiological and biochemical responses of native (Ruditapes decussatus) and alien-invasive (Ruditapes philippinarum) clams to environmental warming. We evaluated thermal tolerance limits (CTMax), routine metabolic rates (RMRs) and respective thermal sensitivity (Q10 values), critical oxygen partial pressure (Pcrit), heat shock response (HSP70/HSC70 levels), lipid peroxidation (MDA build-up) and antioxidant enzyme [glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD)] activities. Contrary to most studies that show that invasive species have a higher thermal tolerance than native congeners, here we revealed that the alien-invasive and native species had similar CTMax values. However, warming had a stronger effect on metabolism and oxidative status of the native R. decussatus, as indicated by the higher RMRs and HSP70/HSC70 and MDA levels, as well as GST, CAT and SOD activities. Moreover, we argue that the alien-invasive clams, instead of up-regulating energetically expensive cellular responses, have evolved a less demanding strategy to cope with short-term environmental (oxidative) stress-pervasive valve closure. Although efficient during stressful short-term periods to ensure isolation and guarantee longer survival, such adaptive behavioural strategy entails metabolic arrest (and the enhancement of anaerobic pathways), which to some extent will not be advantageous under the chronically warming conditions predicted in the future.


Asunto(s)
Bivalvos/metabolismo , Cambio Climático , Océanos y Mares , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Bivalvos/genética , Bivalvos/fisiología , Catalasa/metabolismo , Monitoreo del Ambiente , Proteínas HSP70 de Choque Térmico/biosíntesis , Respuesta al Choque Térmico , Peroxidación de Lípido/genética , Superóxido Dismutasa/metabolismo
11.
J Comp Physiol B ; 184(1): 55-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24100467

RESUMEN

The ability to understand and predict the effects of ocean warming (under realistic scenarios) on marine biota is of paramount importance, especially at the most vulnerable early life stages. Here we investigated the impact of predicted environmental warming (+3 °C) on the development, metabolism, heat shock response and antioxidant defense mechanisms of the early stages of the common octopus, Octopus vulgaris. As expected, warming shortened embryonic developmental time by 13 days, from 38 days at 18 °C to 25 days at 21 °C. Concomitantly, survival decreased significantly (~29.9 %). Size at hatching varied inversely with temperature, and the percentage of smaller premature paralarvae increased drastically, from 0 % at 18 °C to 17.8 % at 21 °C. The metabolic costs of the transition from an encapsulated embryo to a free planktonic form increased significantly with warming, and HSP70 concentrations and glutathione S-transferase activity levels were significantly magnified from late embryonic to paralarval stages. Yet, despite the presence of effective antioxidant defense mechanisms, ocean warming led to an augmentation of malondialdehyde levels (an indicative of enhanced ROS action), a process considered to be one of the most frequent cellular injury mechanisms. Thus, the present study provides clues about how the magnitude and rate of ocean warming will challenge the buffering capacities of octopus embryos and hatchlings' physiology. The prediction and understanding of the biochemical and physiological responses to warmer temperatures (under realistic scenarios) is crucial for the management of highly commercial and ecologically important species, such as O. vulgaris.


Asunto(s)
Embrión no Mamífero/fisiología , Calentamiento Global , Octopodiformes/fisiología , Animales , Desarrollo Embrionario , Glutatión Transferasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Peroxidación de Lípido , Malondialdehído/metabolismo , Océanos y Mares , Oxígeno/metabolismo
12.
Aquat Toxicol ; 146: 205-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316438

RESUMEN

Marine phycotoxins derived from harmful algal blooms are known to be associated with mass mortalities in the higher trophic levels of marine food webs. Bivalve mollusks and planktivorous fish are the most studied vectors of marine phycotoxins. However, field surveys recently showed that cephalopod mollusks also constitute potential vectors of toxins. Thus, here we determine, for the first time, the time course of accumulation and depuration of paralytic shellfish toxins (PSTs) in the common octopus (Octopus vulgaris). Concomitantly, the underlying kinetics of toxin transfer between tissue compartments was also calculated. Naturally contaminated clams were used to orally expose the octopus to PSTs during 6 days. Afterwards, octopus specimens were fed with non-contaminated shellfish during 10 days of depuration period. Toxins reached the highest concentrations in the digestive gland surpassing the levels in the kidney by three orders of magnitude. PSTs were not detected in any other tissue analyzed. Net accumulation efficiencies of 42% for GTX5, 36% for dcSTX and 23% for C1+2 were calculated for the digestive gland. These compounds were the most abundant toxins in both digestive gland and the contaminated shellfish diet. The small differences in relative abundance of each toxin observed between the prey and the cephalopod predator indicates low conversion rates of these toxins. The depuration period was better described using an exponential decay model comprising a single compartment - the entire viscera. It is worth noting that since octopuses' excretion and depuration rates are low, the digestive gland is able to accumulate very high toxin concentrations for long periods of time. Therefore, the present study clearly shows that O. vulgaris is a high-potential vector of PSTs during and even after the occurrence of these toxic algal blooms.


Asunto(s)
Toxinas Marinas/metabolismo , Octopodiformes/fisiología , Contaminantes Químicos del Agua/metabolismo , Animales , Conducta Alimentaria/efectos de los fármacos , Cinética , Toxinas Marinas/análisis , Toxinas Marinas/toxicidad , Modelos Biológicos , Octopodiformes/efectos de los fármacos , Octopodiformes/metabolismo , Análisis de Supervivencia , Distribución Tisular , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Mar Drugs ; 11(9): 3381-409, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-24018900

RESUMEN

Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB)-related toxins in cephalopods (octopods, cuttlefishes and squids). These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers), saxitoxin (and its derivatives) and palytoxin (and palytoxin-like compounds) and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin) in several tissues, but mainly in the digestive gland (DG)--the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6%) is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas) is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs), these organisms accumulate them at the greatest extent in DG >> kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue) reaching 971 µg kg⁻¹ and palytoxin reaching 115 µg kg⁻¹ (the regulatory limit for PlTXs is 30 µg kg⁻¹ in shellfish). Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the Mediterranean area.


Asunto(s)
Cefalópodos/metabolismo , Floraciones de Algas Nocivas , Toxinas Marinas/metabolismo , Animales , Cadena Alimentaria , Humanos , Ácido Kaínico/análogos & derivados , Ácido Kaínico/metabolismo
14.
Proc Biol Sci ; 280(1768): 20131695, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23926158

RESUMEN

The combined effects of future ocean acidification and global warming on the hypoxia thresholds of marine biota are, to date, poorly known. Here, we show that the future warming and acidification scenario led to shorter embryonic periods, lower survival rates and the enhancement of premature hatching in the cuttlefish Sepia officinalis. Routine metabolic rates increased during the embryonic period, but environmental hypercapnia significantly depressed pre-hatchling's energy expenditures rates (independently of temperature). During embryogenesis, there was also a significant rise in the carbon dioxide partial pressure in the perivitelline fluid (PVF), bicarbonate levels, as well as a drop in pH and oxygen partial pressure (pO2). The critical partial pressure (i.e. hypoxic threshold) of the pre-hatchlings was significantly higher than the PVF oxygen partial pressure at the warmer and hypercapnic condition. Thus, the record of oxygen tensions below critical pO2 in such climate scenario indicates that the already harsh conditions inside the egg capsules are expected to be magnified in the years to come, especially in populations at the border of their thermal envelope. Such a scenario promotes untimely hatching and smaller post-hatching body sizes, thus challenging the survival and fitness of early life stages.


Asunto(s)
Hipoxia de la Célula , Decapodiformes/fisiología , Animales , Dióxido de Carbono/metabolismo , Cambio Climático , Decapodiformes/embriología , Desarrollo Embrionario , Metabolismo Energético , Concentración de Iones de Hidrógeno , Océanos y Mares , Presión Parcial , Temperatura
15.
Comp Biochem Physiol B Biochem Mol Biol ; 161(2): 178-87, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22100702

RESUMEN

The objectives of the present work were to investigate the temporal variation in the fatty acid (FA) composition of the octocoral Veretillum cynomorium, examine the effects of reproduction and environmental factors on FA variation, and establish a chemotaxonomic identification for this species. Mean oocyte size-frequency distributions showed that the majority of the oocytes had an intermediate size (Group II) before spawning (April and June). The late-vitellogenic oocytes (Group III) became absent in August and October and, during this post-spawning period, oocytes were primarily of small size (Group I). Most of the major FA, 16:0, 18:0, 20:4n-6, 20:5n-3, and the tetracosapolyenoic fatty acid (TPA), 24:6n-3, varied significantly throughout the year (p<0.01), with two peaks in August/October and February. The boost in early oogenesis, also associated with warmer temperatures, seemed to be responsible for the observed increase in FA content between June and August. The highest values of FA content were observed in February when intermediate oogenesis (Group II) was at its peak and there were considerable levels of available food in the environment. Also, the increase in food availability seemed to trigger the final stages of gametogenesis. The high quantity of 18:1n-7, odd-numbered and branched FAs, suggested the presence of a dynamic bacterial community in V. cynomorium, probably as an adaptive response to the lack of symbiotic microalgae. Although the presence of TPAs is the main feature distinguishing octocorals from other coral species, here we showed that there was no single FA clearly dominating the FA composition of V. cynomorium throughout the year. Instead, four main FAs share similar concentrations: 16:0, 20:4n-6, 20:5n-3 and 24:6n-3. The predominance of these four FAs combined with the higher amount of 24:6n-3 when compared to 24:5n-6 may serve as a chemotaxonomic feature to distinguish this octocoral species (or genus).


Asunto(s)
Antozoos/metabolismo , Ácidos Grasos/metabolismo , Animales , Tamaño de la Célula , Femenino , Oocitos/citología , Oocitos/metabolismo , Oogénesis , Reproducción , Salinidad , Estaciones del Año , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...