Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 55(46): 14267-14271, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27714900

RESUMEN

Advanced molecular electronic components remain vital for the next generation of miniaturized integrated circuits. Thus, much research effort has been devoted to the discovery of lossless molecular wires, for which the charge transport rate or conductivity is not attenuated with length in the tunneling regime. Herein, we report the synthesis and electrochemical interrogation of DNA-like molecular wires. We determine that the rate of electron transfer through these constructs is independent of their length and propose a plausible mechanism to explain our findings. The reported approach holds relevance for the development of high-performance molecular electronic components and the fundamental study of charge transport phenomena in organic semiconductors.

2.
Angew Chem Int Ed Engl ; 55(10): 3352-5, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26834003

RESUMEN

Carbon-based materials, such as acenes, fullerenes, and graphene nanoribbons, are viewed as the potential successors to silicon in the next generation of electronics. Although a number of methodologies provide access to these materials' all-carbon variants, relatively fewer strategies readily furnish their nitrogen-doped analogues. Herein, we report the rational design, preparation, and characterization of nitrogen-containing rubicenes and tetrabenzopentacenes, which can be viewed either as acene derivatives or as molecular fragments of fullerenes and graphene nanoribbons. The reported findings may prove valuable for the development of electron transporting organic semiconductors and for the eventual construction of larger carbonaceous systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...