Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(22)2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998374

RESUMEN

COVID-19 emerged as a worldwide pandemic in early 2020, and while the rapid development of safe and efficacious vaccines stands as an extraordinary achievement, the identification of effective therapeutics has been less successful. This process has been limited in part by a lack of human-relevant preclinical models compatible with therapeutic screening on the native virus, which requires a high-containment environment. Here, we report SARS-CoV-2 infection and robust viral replication in PREDICT96-ALI, a high-throughput, human primary cell-based organ-on-chip platform. We evaluate unique infection kinetic profiles across lung tissue from three human donors by immunofluorescence, RT-qPCR, and plaque assays over a 6-day infection period. Enabled by the 96 devices/plate throughput of PREDICT96-ALI, we also investigate the efficacy of Remdesivir and MPro61 in a proof-of-concept antiviral study. Both compounds exhibit an antiviral effect against SARS-CoV-2 in the platform. This demonstration of SARS-CoV-2 infection and antiviral dosing in a high-throughput organ-on-chip platform presents a critical capability for disease modeling and therapeutic screening applications in a human physiology-relevant in vitro system.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Pulmón , Replicación Viral
2.
Mol Microbiol ; 115(2): 272-289, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32996193

RESUMEN

Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.


Asunto(s)
Endopeptidasa Clp/metabolismo , Mycobacterium tuberculosis/metabolismo , Estrés Fisiológico/fisiología , Proteínas Bacterianas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/genética
3.
Front Microbiol ; 11: 1248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655524

RESUMEN

As ß-lactams are reconsidered for the treatment of tuberculosis (TB), their targets are assumed to be peptidoglycan transpeptidases, as verified by adduct formation and kinetic inhibition of Mycobacterium tuberculosis (Mtb) transpeptidases by carbapenems active against replicating Mtb. Here, we investigated the targets of recently described cephalosporins that are selectively active against non-replicating (NR) Mtb. NR-active cephalosporins failed to inhibit recombinant Mtb transpeptidases. Accordingly, we used alkyne analogs of NR-active cephalosporins to pull down potential targets through unbiased activity-based protein profiling and identified over 30 protein binders. None was a transpeptidase. Several of the target candidates are plausibly related to Mtb's survival in an NR state. However, biochemical tests and studies of loss of function mutants did not identify a unique target that accounts for the bactericidal activity of these beta-lactams against NR Mtb. Instead, NR-active cephalosporins appear to kill Mtb by collective action on multiple targets. These results highlight the ability of these ß-lactams to target diverse classes of proteins.

4.
mBio ; 10(4)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289182

RESUMEN

A defining characteristic of treating tuberculosis is the need for prolonged administration of multiple drugs. This may be due in part to subpopulations of slowly replicating or nonreplicating Mycobacterium tuberculosis bacilli exhibiting phenotypic tolerance to most antibiotics in the standard treatment regimen. Confounding this problem is the increasing incidence of heritable multidrug-resistant M. tuberculosis A search for new antimycobacterial chemical scaffolds that can kill phenotypically drug-tolerant mycobacteria uncovered tricyclic 4-hydroxyquinolines and a barbituric acid derivative with mycobactericidal activity against both replicating and nonreplicating M. tuberculosis Both families of compounds depleted M. tuberculosis of intrabacterial magnesium. Complete or partial resistance to both chemotypes arose from mutations in the putative mycobacterial Mg2+/Co2+ ion channel, CorA. Excess extracellular Mg2+, but not other divalent cations, diminished the compounds' cidality against replicating M. tuberculosis These findings establish depletion of intrabacterial magnesium as an antimicrobial mechanism of action and show that M. tuberculosis magnesium homeostasis is vulnerable to disruption by structurally diverse, nonchelating, drug-like compounds.IMPORTANCE Antimycobacterial agents might shorten the course of treatment by reducing the number of phenotypically tolerant bacteria if they could kill M. tuberculosis in diverse metabolic states. Here we report two chemically disparate classes of agents that kill M. tuberculosis both when it is replicating and when it is not. Under replicating conditions, the tricyclic 4-hydroxyquinolines and a barbituric acid analogue deplete intrabacterial magnesium as a mechanism of action, and for both compounds, mutations in CorA, a putative Mg2+/Co2+ transporter, conferred resistance to the compounds when M. tuberculosis was under replicating conditions but not under nonreplicating conditions, illustrating that a given compound can kill M. tuberculosis in different metabolic states by disparate mechanisms. Targeting magnesium metallostasis represents a previously undescribed antimycobacterial mode of action that might cripple M. tuberculosis in a Mg2+-deficient intraphagosomal environment of macrophages.


Asunto(s)
Antituberculosos/farmacología , Proteínas de Transporte de Catión/genética , Magnesio/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Replicación del ADN , Homeostasis , Mutación
5.
ACS Infect Dis ; 5(8): 1433-1445, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31184461

RESUMEN

The historical view of ß-lactams as ineffective antimycobacterials has given way to growing interest in the activity of this class against Mycobacterium tuberculosis (Mtb) in the presence of a ß-lactamase inhibitor. However, most antimycobacterial ß-lactams kill Mtb only or best when the bacilli are replicating. Here, a screen of 1904 ß-lactams led to the identification of cephalosporins substituted with a pyrithione moiety at C3' that are active against Mtb under both replicating and nonreplicating conditions, neither activity requiring a ß-lactamase inhibitor. Studies showed that activity against nonreplicating Mtb required the in situ release of the pyrithione, independent of the known class A ß-lactamase, BlaC. In contrast, replicating Mtb could be killed both by released pyrithione and by the parent ß-lactam. Thus, the antimycobacterial activity of pyrithione-containing cephalosporins arises from two mechanisms that kill mycobacteria in different metabolic states.


Asunto(s)
Antituberculosos/farmacología , Cefalosporinas/farmacología , Replicación del ADN , Mycobacterium tuberculosis/efectos de los fármacos , Piridinas/farmacología , Tionas/farmacología , Administración Oral , Animales , Antituberculosos/administración & dosificación , Callithrix , Cefalosporinas/administración & dosificación , Descubrimiento de Drogas , Femenino , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mycobacterium tuberculosis/fisiología , Piridinas/administración & dosificación , Tionas/administración & dosificación
6.
J Med Chem ; 59(13): 6027-44, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27144688

RESUMEN

We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a ß-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Cefalosporinas/química , Cefalosporinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/farmacocinética , Células Cultivadas , Cefalosporinas/farmacocinética , Femenino , Células Hep G2 , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/fisiología , Relación Estructura-Actividad , Tuberculosis/microbiología
7.
J Vis Exp ; (118)2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-28060290

RESUMEN

There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.


Asunto(s)
Carbón Orgánico/química , Mycobacterium tuberculosis/aislamiento & purificación , Agar , Antituberculosos , Bioensayo , Oxazinas , Oxidación-Reducción , Xantenos
8.
ACS Infect Dis ; 1(12): 580-5, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-27623055

RESUMEN

Identification of compounds that target metabolically diverse subpopulations of Mycobacterium tuberculosis (Mtb) may contribute to shortening the course of treatment for tuberculosis. This study screened 270,000 compounds from GlaxoSmithKline's collection against Mtb in a nonreplicating (NR) state imposed in vitro by a combination of four host-relevant stresses. Evaluation of 166 confirmed hits led to detailed characterization of 19 compounds for potency, specificity, cytotoxicity, and stability. Compounds representing five scaffolds depended on reactive nitrogen species for selective activity against NR Mtb, and two were stable in the assay conditions. Four novel scaffolds with activity against replicating (R) Mtb were also identified. However, none of the 19 compounds was active against Mtb in both NR and R states. There was minimal overlap between compounds found active against NR Mtb and those previously identified as active against R Mtb, supporting the hypothesis that NR Mtb depends on distinct metabolic pathways for survival.

9.
J Biol Chem ; 287(10): 7074-83, 2012 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-22174417

RESUMEN

The larvae of Schistosoma mansoni invade their mammalian host by utilizing a serine protease, cercarial elastase (SmCE), to degrade macromolecular proteins in host skin. The catalytic activity of serine and cysteine proteases can be regulated after activation by serpins. SmSrpQ, one of two S. mansoni serpins found in larval secretions, is only expressed during larval development and in the early stages of mammalian infection. In vitro, (35)S-SmSrpQ was able to form an SDS-stable complex with a component of the larval lysate, but no complex was detected when (35)S-SmSrpQ was incubated with several mammalian host proteases. Formation of a complex was sensitive to the protease active site inhibitors PMSF, Z-AAPF-CMK, and Z-AAPL-CMK. Western blot analysis of parasite lysates from different life stages detected a complex of comparable size to SmCE bound to SmSrpQ using anti-SmSrpQ or anti-SmCE antibodies. SmSrpQ and SmCE are located in adjacent but discrete compartments in the secretion glands of the parasite. Fluorescence immunohistochemical analysis of simulated infection showed co-localization of SmCE and SmSrpQ in host tissue suggesting a post release regulation of parasite protease activity during skin transversal. The results of this study suggest that cercarial elastase degradation of skin tissue is carefully regulated by SmSrpQ.


Asunto(s)
Inhibidores de Cisteína Proteinasa/metabolismo , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos/fisiología , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/metabolismo , Serpinas/metabolismo , Animales , Inhibidores de Cisteína Proteinasa/química , Proteínas del Helminto/química , Larva/metabolismo , Mamíferos/parasitología , Esquistosomiasis mansoni/patología , Serpinas/química , Caracoles/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...