Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 18(1): 352, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545288

RESUMEN

BACKGROUND: Early peanut pod development is an important process of peanut reproductive development. Modes of DNA methylation during early peanut pod development are still unclear, possibly because its allotetraploid genome may cause difficulty for the methylome analysis. RESULTS: To investigate the functions of the dynamic DNA methylation during the early development of the peanut pod, global methylome and gene expression analyses were carried out by Illumina high throughput sequencing. A novel mapping strategy of reads was developed and used for methylome and gene expression analysis. Differentially methylated genes, such as nodulin, cell number regulator-like protein, and senescence-associated genes, were identified during the early developmental stages of the peanut pod. The expression levels of gibberellin-related genes changed during this period of pod development. From the stage one (S1) gynophore to the stage two (S2) gynophore, the expression levels of two key methyltransferase genes, DRM2 and MET1, were up-regulated, which may lead to global DNA methylation changes between these two stages. The differentially methylated and expressed genes identified in the S1, S2, and stage 3 (S3) gynophore are involved in different biological processes such as stem cell fate determination, response to red, blue, and UV light, post-embryonic morphogenesis, and auxin biosynthesis. The expression levels of many genes were co-related by their DNA methylation levels. In addition, our results showed that the abundance of some 24-nucleotide siRNAs and miRNAs were positively associated with DNA methylation levels of their target loci in peanut pods. CONCLUSION: A novel mapping strategy of reads was described and verified in this study. Our results suggest that the methylated modes of the S1, S2, and S3 gynophore are different. The methylation changes that were identified during early peanut pod development provide useful information for understanding the roles of epigenetic regulation in peanut pod development.


Asunto(s)
Arachis/crecimiento & desarrollo , Metilación de ADN/genética , Arachis/genética , Arachis/metabolismo , Mapeo Cromosómico , Metilación de ADN/fisiología , ADN de Plantas/genética , ADN de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
2.
Sci Rep ; 6: 35245, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731413

RESUMEN

Lipoxygenase (LOX) genes are widely distributed in plants and play crucial roles in resistance to biotic and abiotic stress. Although they have been characterized in various plants, little is known about the evolution of legume LOX genes. In this study, we identified 122 full-length LOX genes in Arachis duranensis, Arachis ipaënsis, Cajanus cajan, Cicer arietinum, Glycine max, Lotus japonicus and Medicago truncatula. In total, 64 orthologous and 36 paralogous genes were identified. The full-length, polycystin-1, lipoxygenase, alpha-toxin (PLAT) and lipoxygenase domain sequences from orthologous and paralogous genes exhibited a signature of purifying selection. However, purifying selection influenced orthologues more than paralogues, indicating greater functional conservation of orthologues than paralogues. Neutrality and effective number of codons plot results showed that natural selection primarily shapes codon usage, except for C. arietinum, L. japonicas and M. truncatula LOX genes. GCG, ACG, UCG, CGG and CCG codons exhibited low relative synonymous codon usage (RSCU) values, while CCA, GGA, GCU, CUU and GUU had high RSCU values, indicating that the latter codons are strongly preferred. LOX expression patterns differed significantly between wild-type peanut and cultivated peanut infected with Aspergillus flavus, which could explain the divergent disease resistance of wild progenitor and cultivars.


Asunto(s)
Arachis/enzimología , Aspergillus flavus/patogenicidad , Lipooxigenasas/genética , Arachis/genética , Arachis/microbiología , Codón , Filogenia
3.
Science ; 336(6089): 1711-5, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22745430

RESUMEN

Modern tomato (Solanum lycopersicum) varieties are bred for uniform ripening (u) light green fruit phenotypes to facilitate harvests of evenly ripened fruit. U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines chlorophyll accumulation and distribution in developing fruit. In tomato, two GLKs--SlGLK1 and SlGLK2--are expressed in leaves, but only SlGLK2 is expressed in fruit. Expressing GLKs increased the chlorophyll content of fruit, whereas SlGLK2 suppression recapitulated the u mutant phenotype. GLK overexpression enhanced fruit photosynthesis gene expression and chloroplast development, leading to elevated carbohydrates and carotenoids in ripe fruit. SlGLK2 influences photosynthesis in developing fruit, contributing to mature fruit characteristics and suggesting that selection of u inadvertently compromised ripe fruit quality in exchange for desirable production traits.


Asunto(s)
Cloroplastos/genética , Proteínas de Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Factores de Transcripción/genética , Cloroplastos/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas , Frutas/genética , Frutas/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología
4.
Front Plant Sci ; 3: 39, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22645583

RESUMEN

Grafting has been used in agriculture for over 2000 years. Disease resistance and environmental tolerance are highly beneficial traits that can be provided through use of grafting, although the mechanisms, in particular for resistance, have frequently been unknown. As information emerges that describes plant disease resistance mechanisms, the proteins, and nucleic acids that play a critical role in disease management can be expressed in genetically engineered (GE) plant lines. Utilizing transgrafting, the combination of a GE rootstock with a wild-type (WT) scion, or the reverse, has the potential to provide pest and pathogen resistance, impart biotic and abiotic stress tolerance, or increase plant vigor and productivity. Of central importance to these potential benefits is the question of to what extent nucleic acids and proteins are transmitted across a graft junction and whether the movement of these molecules will affect the efficacy of the transgrafting approach. Using a variety of specific examples, this review will report on the movement of organellar DNA, RNAs, and proteins across graft unions. Attention will be specifically drawn to the use of small RNAs and gene silencing within transgrafted plants, with a particular focus on pathogen resistance. The use of GE rootstocks or scions has the potential to extend the horticultural utility of grafting by combining this ancient technique with the molecular strategies of the modern era.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA