Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Allergy ; 78(1): 202-213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841381

RESUMEN

BACKGROUND: Anaphylaxis is the most acute and life-threatening manifestation of allergic disorders. Currently, there is a need to improve its medical management and increase the understanding of its molecular mechanisms. This study aimed to quantify the extravasation underlying human anaphylactic reactions and propose new theragnostic approaches. METHODS: Molecular determinations were performed in paired serum samples obtained during the acute phase and at baseline from patients presenting with hypersensitivity reactions. These were classified according to their severity as Grades 1, 2 and 3, the two latter being considered anaphylaxis. Tryptase levels were measured by ImmunoCAP, and serum protein concentration was quantified by Bradford assay. Human serum albumin (HSA) and haemoglobin beta subunit (HBB) levels were determined by Western blot and polyacrylamide gel electrophoresis, respectively. RESULTS: A total of 150 patients were included in the study. Of them, 112 had experienced anaphylaxis (83 and 29 with Grade 2 and 3 reactions, respectively). Tryptase diagnostic efficiency substantially improved when considering patients' baseline values (33%-54%) instead of the acute value threshold (21%). Serum protein concentration and HSA significantly decreased in anaphylaxis (p < .0001). HSA levels dropped with the severity of the reaction (6% and 15% for Grade 2 and 3 reactions, respectively). Furthermore, HBB levels increased during the acute phase of all hypersensitivity reactions (p < .0001). CONCLUSIONS: For the first time, the extravasation underlying human anaphylaxis has been evaluated based on the severity of the reaction using HSA and protein concentration measurements. Additionally, our findings propose new diagnostic and potential therapeutic approaches for this pathological event.


Asunto(s)
Anafilaxia , Humanos , Anafilaxia/diagnóstico , Anafilaxia/etiología , Triptasas , Albúmina Sérica Humana
2.
Pediatr Allergy Immunol ; 32(6): 1296-1306, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33876465

RESUMEN

BACKGROUND: Anaphylaxis is the most severe manifestation of allergic disorders. The poor knowledge of its molecular mechanisms often leads to under-diagnosis. MicroRNAs (miRNA) regulate physiologic and pathologic processes, and they have been postulated as promising diagnostic markers. The main objectives of this study were to characterize the human miRNA profile during anaphylaxis and to assess their capacity as diagnostic markers and determine their participation in the molecular mechanisms of this event. METHODS: The miRNA serum profiles from the acute and baseline phase of 5 oral food-challenged anaphylactic children (<18 years old) were obtained by next-generation sequencing (NGS). From the panel of statistically significant miRNAs obtained, several candidates were selected and analyzed in 19 anaphylactic children by qPCR. We performed system biology analysis (SBA) on their target genes to identify main functions and canonical pathways. A functional in vitro assay was carried out incubating endothelial cells (ECs) in anaphylactic conditions. RESULTS: The NGS identified 389 miRNAs among which 41 were significantly different between acute and baseline samples. The high levels of miR-21-3p (fold change = 2.28, P = .006) and miR-487b-3p (fold change = 1.04, P = .039) observed by NGS in acute serum samples were confirmed in a larger group of 19 patients. The SBA revealed molecular pathways related to the inflammation and immune system regulation. miR-21-3p increased intracellularly and in acute phase serum after EC stimulation. CONCLUSIONS: These findings provide, for the first time, some insights into the anaphylactic miRNA serum profile in children and point to miR-21-3p and miR-487b-3p as candidate biomarkers. Furthermore, the SBA revealed a possible implication of these molecules in the underlying molecular mechanisms. Moreover, ECs increased miR-21-3p intracellularly and released it to the environment in response to anaphylaxis.


Asunto(s)
Anafilaxia , MicroARNs , Adolescente , Biomarcadores , Niño , Células Endoteliales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...