Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 47(41): 14580-14593, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30259018

RESUMEN

Crosslinking chemistry of a liquid poly(vinylmethyl-co-methyl)silazane with an alane hydride-based complex according to Si : Al ratios varying from 5 to 2.5 has been investigated in detail through the characterization of the as-obtained polymers using solid-state NMR, FT-IR and elemental analyses. This reaction allows tailoring the chemical and physical properties of the neat liquid polysilazane while extending its processability to lead to a series of low-temperature formable aluminium-modified polysilazanes. Structural models have been established based on solid-state NMR spectroscopy. Then, pyrolysis under nitrogen occurring the conversion of polymers into ceramics has been studied by coupling TG experiments with FTIR of pyrolysis intermediates. Pyrolysis at 1000 °C leads to X-ray amorphous Al-modified silicon carbonitride materials with higher ceramic yields compared to the materials obtained from the neat polysilazane. However, the increase of the ceramic yield is minimized with the decrease of the Si : Al ratio from 5 to 2.5 in the as-obtained polymers. This is due to the introduction of -NR3 (R = CH3 and C2H5) units as side groups during the polymer synthesis which are released in the low temperature regime of the pyrolysis. The structural evolution of the amorphous network of ceramics has been studied by annealing up to 1800 °C though X-ray diffraction and Raman spectroscopy. Such studies point out that samples remain amorphous even after annealing at 1400 °C (low Si : Al ratio) and 1600 °C (high Si : Al ratio) before forming Si3N4/SiC/AlN and AlN/SiC/C composites after annealing at 1800 °C depending on the Si : Al ratio fixed in the early stage of the process. Dense pieces could be prepared from these low-temperature formable polymers. The latter, especially those containing a certain portion of -NR3 (R = CH3 and C2H5) units acting as plasticizing groups during the process, display appropriate requirements for pressing at low temperature forming dense pieces with hardness and Young's modulus as high as 21.7 GPa and 192.7 GPa, respectively.

2.
Dalton Trans ; 46(39): 13510-13523, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28951922

RESUMEN

Two series of co-polymers with the general formula [B(C2H4SiCH3(NH)x(NCH3)y)3]n, i.e., composed of C2H4SiCH3(NH)x and C2H4SiCH3(NCH3)y (C2H4 = CHCH3, CH2CH2) building blocks in a well defined x : y ratio, have been synthesized by hydroboration of dichloromethylvinylsilane with borane dimethyl sulfide followed by successive reactions with lithium amide and methylamine according to controlled ratios. The role of the chemistry behind their syntheses has been studied in detail by solid-state NMR, FT-IR and elemental analyses. Then, the intimate relationship between the chemistry and the melt-spinnability of these polymers was discussed. By keeping x = 0.50 and increasing y above 0.50, i.e., obtaining methylamine excess, the co-polymers contained more ending groups and especially more tetracoordinated boron, thus allowing tuning very precisely the chemical structure of the preceramic polymer in order to meet the requirements for melt-spinning. The curing treatment under ammonia at 200 °C efficiently rendered the green fibers infusible before their subsequent pyrolysis under nitrogen at 1000 °C to generate Si-B-C-N ceramic fibers. Interestingly, it could be possible to produce also low diameter hollow fibers with relatively high mechanical properties for a further exploration as membrane materials.

3.
Biosens Bioelectron ; 79: 835-42, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26774998

RESUMEN

The low molecular weight hapten, Ochratoxin A (OTA), is a natural carcinogenic mycotoxin produced by Aspergillus and Penicillium fungi and so it commonly appears in wines, other foods, and in the environment. An amperometric biosensor has been developed that uses the immobilized synthetic peptide, NFO4; which possesses a high binding affinity and thus provides for molecular recognition of OTA; simulating the mycotoxin-specific antibody. Biotransducers were produced from a microlithographically fabricated electrochemical cell-on-a-chip that uses the microdisc electrode array working electrode format augmented with microporous graphitized carbon (MGC) that was electrodeposited within a poly(aniline-co-meta-aminoaniline) electroconductive polymer layer. A redox mediator, iron-nickel hexacyanoferrate (Fe|NiHCF) was amperometrically deposited onto the MGC. The device was then dip-coated with monomer cocktail that yielded poly(HEMA-co-AEMA) foam that was prepared in-situ by UV crosslinking and by sequentially freezing followed by freeze drying of the chip to yield a 3-D support for the chelation of Zn(2+) ions (ZnCl2) and the subsequent immobilization of N-terminus his-tagged peptide, NFO4. To conduct the biosensors assay, HRP conjugated OTA was added to the free OTA solutions and together competitively incubated on the biospecific MDEA ECC 5037-Pt|MGC|HCF|Hydrogel-NFO4 biotransducer. The amperometric response to peroxide was determined after 5 min of enzymatic reaction following addition of standard substrate H2O2/luminol. Simultaneous analysis of light emission signals (λmax=425 nm) allowed direct comparison of amperometric and luminescence performance. Using chitosan foam and a luminescence bioassay we obtained maximum inhibition at 10 µg L(-1) and half inhibition occurred at 2.1 µg L(-1). Using poly(HEMA-co-AEMA) hydrogel and an amperometric bioassay (50s) we obtained maximum inhibition at 10 µg L(-1) and half inhibition occurred at 2.8 µg L(-1).


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Mediciones Luminiscentes/instrumentación , Micotoxinas/análisis , Ocratoxinas/análisis , Sitios de Unión , Electrodos , Diseño de Equipo , Dispositivos Laboratorio en un Chip , Luminiscencia , Péptidos/química , Polímeros/química , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA