Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 23(6): 4032-4040, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37304398

RESUMEN

Crystallization in confined spaces is a widespread process in nature that also has important implications for the stability and durability of many man-made materials. It has been reported that confinement can alter essential crystallization events, such as nucleation and growth and, thus, have an impact on crystal size, polymorphism, morphology, and stability. Therefore, the study of nucleation in confined spaces can help us understand similar events that occur in nature, such as biomineralization, design new methods to control crystallization, and expand our knowledge in the field of crystallography. Although the fundamental interest is clear, basic models at the laboratory scale are scarce mainly due to the difficulty in obtaining well-defined confined spaces allowing a simultaneous study of the mineralization process outside and inside the cavities. Herein, we have studied magnetite precipitation in the channels of cross-linked protein crystals (CLPCs) with different channel pore sizes, as a model of crystallization in confined spaces. Our results show that nucleation of an Fe-rich phase occurs inside the protein channels in all cases, but, by a combination of chemical and physical effects, the channel diameter of CLPCs exerted a precise control on the size and stability of those Fe-rich nanoparticles. The small diameters of protein channels restrain the growth of metastable intermediates to around 2 nm and stabilize them over time. At larger pore diameters, recrystallization of the Fe-rich precursors into more stable phases was observed. This study highlights the impact that crystallization in confined spaces can have on the physicochemical properties of the resulting crystals and shows that CLPCs can be interesting substrates to study this process.

2.
ACS Appl Polym Mater ; 5(3): 2154-2165, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36935654

RESUMEN

Fibrin hydrogels made by self-assembly of fibrinogen obtained from human plasma have shown excellent biocompatible and biodegradable properties and are widely used in regenerative medicine. The fibrinogen self-assembly process can be triggered under physiological conditions by the action of thrombin, allowing the injection of pregel mixtures that have been used as cell carriers, wound-healing systems, and bio-adhesives. However, access to fibrinogen from human plasma is expensive and fibrin gels have limited mechanical properties, which make them unsuitable for certain applications. One solution to these problems is to obtain composite gels made of fibrin and other polymeric compounds that improve their mechanical properties and usage. Herein, we prepared composite hydrogels made by the self-assembly of fibrinogen together with Fmoc-FF (Fmoc-diphenylalanine) and Fmoc-RGD (Fmoc-arginine-glycine-aspartic acid). We have shown that the mixture of these three peptides co-assembles and gives rise to a unique type of supramolecular fiber, whose morphology and mechanical properties can be modulated. We have carried out a complete characterization of these materials from chemical, physical, and biological points of view. Composite gels have improved mechanical properties compared to pure fibrin gels, as well as showing excellent biocompatibility ex vivo. In vivo experiments have shown that these gels do not cause any type of inflammatory response or tissue damage and are completely resorbed in short time, which would enable their use as vehicles for cell, drug, or growth factor release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...