Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39199233

RESUMEN

Combined use of edible films (EF) with nanoencapsulation systems could be an effective alternative for improving the films' physical properties and maintaining bioactive compounds' stability. This research work focuses on the combined use of EF of cellulose-derived biopolymers enriched with liposomes that encapsulate grape seed tannins and on the subsequent evaluation of the physical properties and wettability. Tannin-containing liposomal suspensions (TLS) showed 570.8 ± 6.0 nm particle size and 99% encapsulation efficiency. In vitro studies showed that the release of tannins from liposomes was slower than that of free tannins, reaching a maximum release of catechin of 0.13 ± 0.01%, epicatechin of 0.57 ± 0.01%, and gallic acid of 3.90 ± 0.001% over a 144 h period. Adding liposomes to biopolymer matrices resulted in significant decrease (p < 0.05) of density, surface tension, tensile strength, elongation percentage, and elastic modulus in comparison to the control, obtaining films with greater flexibility and lower breaking strength. Incorporating TLS into EF formulations resulted in partially wetting the hydrophobic surface, reducing adhesion and cohesion compared to EF without liposomes. Results indicate that the presence of liposomes improves films' physical and wettability properties, causing them to extend and not contract when applied to hydrophobic food surfaces.

2.
Food Res Int ; 145: 110402, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34112405

RESUMEN

The use of bioactive compounds within the biopolymer-based Edible Coatings (EC) matrices has certain limitations for their application at the food industry level. Encapsulation has been considered as a strategy that enables protecting and improving the physical and chemical characteristics of the compounds; as a result, it extends the shelf life of coated foods. This review discusses recent progress in combining edible coatings with nanoencapsulation technology. We also described and discussed various works, in which nanoliposomes are used as encapsulation systems to prepare, and subsequently apply the edible coatings in plant products and meat products. The use of nanoliposomes for the encapsulation of phenolic compounds and essential oils provides an improvement in the antioxidant and antimicrobial properties of coatings by extending the shelf life of food matrices. However, when liposomes are stored for a long period of time, they may present some degree of instability manifested by an increase in size, polydispersity index, and zeta potential. This is reflected in an aggregation, fusion, and rupture of the vesicles. This investigation can help researchers and industries to select an appropriate and efficient biopolymer to form EC containing nanoencapsulated active compounds. This work also addresses the use of nanoliposomes to create EC extending markedly the shelf life of fruit, reducing the weight loss, and deterioration due to the action of microorganisms.


Asunto(s)
Películas Comestibles , Aceites Volátiles , Conservación de Alimentos , Frutas , Tecnología
3.
Food Res Int ; 130: 108967, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32156401

RESUMEN

The potential use of liposomes as carriers for food active ingredients can be limited by their physical and chemical instabilities in aqueous dispersions, especially for long-term storage. Lyophilization, a process commonly used in the food industry, can also be applied to stabilize and preserve liposomes and to extend their shelf-life. In this work, liposomes with potential use for designing functional foods were prepared with soy phospholipids and rutin. Homogenization and ultrasound were used for particle size reduction. Liposomal stability was evaluated by Dynamic Light Scattering, microscopy and rheological properties. Spherical and unilamellar liposomes were obtained in this work. Zeta potential (ξ = values were around -40 mV), which indicates a great suspension stability even for more than 30 days of storage. Rutin exerted a protective effect by both preventing damage to the liposome bilayer and maintaining the spherical structure after 56 days of storage. Lyophilization caused an increase in the size of the vesicles, reaching sizes around 419 nm and aggregation of vesicles with probably structural damage after 21 storage days. However, it helped to keep the rutin encapsulated (81.9%) for longer time, when compared to refrigerated liposomes. Rheological measurements showed, in general, that the power law model fitted most of the experimental results and dynamic rheological tests showed a sol-gel phase transition between 35 and 45 °C. Lyophilization caused a significant change in all evaluated rheological parameters. For the in vitro release tests, the liposomal bilayer acted as a barrier for the rutin release to the food simulating medium; therefore, the release rate of the antioxidant from the rutin encapsulated liposome was slow compared to the free rutin release rate.


Asunto(s)
Liposomas/química , Reología , Rutina/química , Antioxidantes/química , Liberación de Fármacos , Liofilización/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
4.
Carbohydr Polym ; 231: 115702, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31888827

RESUMEN

The objective of this study was to investigate the physical, rheological and humectability properties of edible coating forming suspensions (ECS) based on hydroxypropyl methylcellulose (HPMC) containing: liposomes that encapsulate rutin, glycerol and cellulose nanofibers on sliced surfaces of almonds and chocolate. On average, liposomes measured between 110.6 ±â€¯10.0 nm and were characterized as stable and homogeneous suspensions. Adding these liposomes to the edible coatings produced significant changes (p< 0.05) in the density and surface tension, which favor the final appearance of the coating. The presence of liposomes increased the apparent viscosity of the ECS, showing a purely viscous and fluid behavior with a good fit (R2 = 0.9996) with the Power Law model. The presence of liposomes and cellulose nanofibers decreased the value of the cohesive energy of the ECS. The studied ECS partially hydrate the surfaces of almond and chocolate as they showed contact angles under 90°.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA