Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13352, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858467

RESUMEN

Liver cancer ranks as the fifth leading cause of cancer-related death globally. Direct intratumoral injections of anti-cancer therapeutics may improve therapeutic efficacy and mitigate adverse effects compared to intravenous injections. Some challenges of intratumoral injections are that the liquid drug formulation may not remain localized and have unpredictable volumetric distribution. Thus, drug delivery varies widely, highly-dependent upon technique. An X-ray imageable poloxamer 407 (POL)-based drug delivery gel was developed and characterized, enabling real-time feedback. Utilizing three needle devices, POL or a control iodinated contrast solution were injected into an ex vivo bovine liver. The 3D distribution was assessed with cone beam computed tomography (CBCT). The 3D distribution of POL gels demonstrated localized spherical morphologies regardless of the injection rate. In addition, the gel 3D conformal distribution could be intentionally altered, depending on the injection technique. When doxorubicin (DOX) was loaded into the POL and injected, DOX distribution on optical imaging matched iodine distribution on CBCT suggesting spatial alignment of DOX and iodine localization in tissue. The controllability and localized deposition of this formulation may ultimately reduce the dependence on operator technique, reduce systemic side effects, and facilitate reproducibility across treatments, through more predictable standardized delivery.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Doxorrubicina , Sistemas de Liberación de Medicamentos , Hidrogeles , Agujas , Poloxámero , Hidrogeles/química , Animales , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Poloxámero/química , Bovinos , Tomografía Computarizada de Haz Cónico/métodos , Hígado/diagnóstico por imagen , Hígado/metabolismo
2.
Res Sq ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496436

RESUMEN

Liver cancer ranks as the fifth leading cause of cancer-related death globally. Direct intratumoral injections of anti-cancer therapeutics may improve therapeutic efficacy and mitigate adverse effects compared to intravenous injections. Some challenges of intratumoral injections are that the liquid drug formulation may not remain localized and have unpredictable volumetric distribution. Thus, drug delivery varies widely, highly-dependent upon technique. An x-ray imageable poloxamer 407 (POL)-based drug delivery gel was developed and characterized, enabling real-time feedback. Utilizing three needle devices, POL or a control iodinated contrast solution were injected into an ex vivo bovine liver. The 3D distribution was assessed with cone beam computed tomography (CBCT). The 3D distribution of POL gels demonstrated localized spherical morphologies regardless of the injection rate. In addition, the gel 3D conformal distribution could be intentionally altered, depending on the injection technique. When doxorubicin (DOX) was loaded into the POL and injected, DOX distribution on optical imaging matched iodine distribution on CBCT suggesting spatial alignment of DOX and iodine localization in tissue. The controllability and localized deposition of this formulation may ultimately reduce the dependence on operator technique, reduce systemic side effects, and facilitate reproducibility across treatments, through more predictable standardized delivery.

3.
Org Lett ; 24(40): 7378-7382, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36190801

RESUMEN

We report a new positively charged azidoamino acid for strain-promoted azide-alkyne cycloaddition (SPAAC) applications that overcomes possible solubility limitations of commonly used azidolysine, especially in systems with numerous ligation sites. The residue is easily synthesized, is compatible with Fmoc-based solid-phase peptide synthesis employing a range of coupling conditions, and offers efficient second-order rate constants in SPAAC ligations employing DBCO (0.34 M-1 s-1) and BCN (0.28 M-1 s-1).


Asunto(s)
Alquinos , Azidas , Alquinos/química , Aminoácidos , Azidas/química , Química Clic , Reacción de Cicloadición , Péptidos , Solubilidad
4.
Chem Sci ; 13(34): 10020-10028, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128231

RESUMEN

The characterization of self-assembling molecules presents significant experimental challenges, especially when associated with phase separation or precipitation. Transparent window infrared (IR) spectroscopy leverages site-specific probes that absorb in the "transparent window" region of the biomolecular IR spectrum. Carbon-deuterium (C-D) bonds are especially compelling transparent window probes since they are non-perturbative, can be readily introduced site selectively into peptides and proteins, and their stretch frequencies are sensitive to changes in the local molecular environment. Importantly, IR spectroscopy can be applied to a wide range of molecular samples regardless of solubility or physical state, making it an ideal technique for addressing the solubility challenges presented by self-assembling molecules. Here, we present the first continuous observation of transparent window probes following stopped-flow initiation. To demonstrate utility in a self-assembling system, we selected the MAX1 peptide hydrogel, a biocompatible material that has significant promise for use in drug delivery and medical applications. C-D labeled valine was synthetically introduced into five distinct positions of the twenty-residue MAX1 ß-hairpin peptide. Consistent with current structural models, steady-state IR absorption frequencies and linewidths of C-D bonds at all labeled positions indicate that these side chains occupy a hydrophobic region of the hydrogel and that the motion of side chains located in the middle of the hairpin is more restricted than those located on the hairpin ends. Following a rapid change in ionic strength to initiate self-assembly, the peptide absorption spectra were monitored as function of time, allowing determination of site-specific time constants. We find that within the experimental resolution, MAX1 self-assembly occurs as a cooperative process. These studies suggest that stopped-flow transparent window FTIR can be extended to other time-resolved applications, such as protein folding and enzyme kinetics.

5.
ACS Appl Bio Mater ; 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35446025

RESUMEN

Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.

6.
Curr Opin Chem Biol ; 64: 131-144, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329941

RESUMEN

For over 20 years, peptide materials in their hydrogel or soluble fibril form have been used for biomedical applications such as drug delivery, cell culture, vaccines, and tissue regeneration. To facilitate the translation of these materials, key areas of research still need to be addressed. Their structural characterization lags compared to amyloid proteins. Many of the structural features designed to guide materials formation are primarily being characterized by their observation in atomic resolution structures of amyloid assemblies. Herein, these motifs are examined in relation to peptide designs identifying common interactions that drive assembly and provide structural specificity. Current efforts to design complex structures, as reviewed here, highlight the need to extend the structural revolution of amyloid proteins to peptide assemblies to validate design principles. With respect to clinical applications, the fundamental interactions and responses of proteins, cells, and the immune system to peptide materials are still not well understood. Only a few trends are just now emerging for peptide materials interactions with biological systems. Understanding how peptide material properties influence these interactions will enable the translation of materials towards current and emerging applications.


Asunto(s)
Hidrogeles , Péptidos , Amiloide/química , Péptidos/química
7.
ACS Biomater Sci Eng ; 7(2): 415-421, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33470801

RESUMEN

We evaluated a peptide-based immunotherapy termed SynerGel: an injectable, biomaterial-based platform for intratumoral drug delivery. A drug-mimicking peptide hydrogel named L-NIL-MDP was loaded with an antitumor cyclic dinucleotide (CDN) immunotherapy agonist. The biomaterial combines inducible nitric oxide synthase (iNOS) inhibition with controlled delivery of CDNs, demonstrating between 4- and 20-fold slower drug release than commercially available hydrogels. SynerGel allowed for immune-mediated elimination of established treatment-resistant oral tumors in a murine model, with a median survival of 67.5 days compared with 44 days in no-treatment control. This report details findings for a promising therapy showing improved efficacy over previous hydrogel systems.


Asunto(s)
Materiales Biocompatibles , Neoplasias de la Boca , Animales , Liberación de Fármacos , Hidrogeles , Inmunoterapia , Ratones , Neoplasias de la Boca/terapia
8.
Biomaterials ; 265: 120401, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002786

RESUMEN

Multidomain peptide (MDP) hydrogels are a class of self-assembling materials that have been shown to elicit beneficial responses for soft tissue regeneration. However, their capacity to promote nervous system regeneration remains unknown. The peripheral nervous system (PNS) substantially recovers after injury, partly due to the abundance of extracellular matrix (ECM) components in its basal lamina. However, severe peripheral nerve injuries that significantly damage the ECM continue to be a major clinical challenge as they occur at a high rate and can be extremely detrimental to patients' quality of life. In this study, a panel of eight MDPs were designed to contain various motifs mimicking extracellular matrix components and growth factors and successfully self-assembled into injectable, nanofibrous hydrogels. Using an in vitro screening system, various lysine based MDPs were found to enhance neurite outgrowth. To test their capacity to promote nerve regeneration in vivo, rat sciatic nerve crush injury was performed with MDP hydrogels injected directly into the injury sites. MDP hydrogels were found to enhance macrophage recruitment to the injury site and degrade efficiently over time. Rats that were injected with the MDP hydrogel K2 and laminin motif-containing MDPs K2-IIKDI and K2-IKVAV were found to have significantly accelerated functional recovery and remyelination compared to those injected with HBSS or other MDPs. These results demonstrate that MDPs enhance neurite outgrowth and promote a multicellular pro-regenerative response in peripheral nerve injury. This study provides important insights into the potential of MDPs as biomaterials for nerve regeneration and other clinical applications.


Asunto(s)
Lesiones por Aplastamiento , Traumatismos de los Nervios Periféricos , Animales , Humanos , Hidrogeles , Regeneración Nerviosa , Péptidos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Calidad de Vida , Ratas , Nervio Ciático
9.
Biomaterials ; 231: 119667, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31855625

RESUMEN

Multidomain Peptide (MDP) hydrogels are nanofibrous materials with many potential biomedical applications. The peptide sequence design of these materials offers high versatility and allows for the incorporation of various chemical functionalities into the nanofibrous scaffold. It is known that host response to biomaterials is strongly affected by factors such as size, shape, stiffness, and chemistry. However, there is a lack of fundamental understanding of the host response to different MDP hydrogels. In particular, it is unknown what effect the chemical functionality displayed on the nanofiber has on biological activity. Here we evaluated the early inflammatory host response to four MDP hydrogels displaying amines, guanidinium ions, and carboxylates in a subcutaneous injection model. While all the studied peptide materials possess similar nanostructure and physical properties, they trigger markedly different inflammatory responses. These were characterized by immunophenotyping of the cellular infiltrate using multi-color flow cytometry. The negatively-charged peptides elicit minimal inflammation characterized by tissue-resident macrophage infiltration, fast remodeling, and no collagen deposition or blood vessel formation within the implants. In contrast, the positively-charged peptides are highly infiltrated by immune cells, are remodeled at a slower rate, promote angiogenesis, and result in a high degree of collagen deposition. The presence of dynamic cell phenotypes characterizes the inflammation caused by the lysine-based peptide, including inflammatory monocytes, macrophages, and lymphoid cells, which is seen to be resolving over time. The arginine-based hydrogel shows higher inflammatory response with a persistent and significant infiltration of polymorphonuclear myeloid-derived cells, even ten days after implantation. This understanding of the immune response to peptide biomaterials improves our ability to design effective materials and to tailor their use for specific biomedical applications.


Asunto(s)
Hidrogeles , Nanofibras , Materiales Biocompatibles , Inmunidad , Péptidos
10.
ACS Biomater Sci Eng ; 5(2): 977-985, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31404449

RESUMEN

Self-assembly of peptides is a powerful method of preparing nanostructured materials. These peptides frequently utilize charged groups as a convenient switch for controlling self-assembly in which pH or ionic strength determines the assembly state. Multidomain peptides have been previously designed with charged domains of amino acids, which create molecular frustration between electrostatic repulsion and a combination of supramolecular forces including hydrogen bonding and hydrophobic packing. This frustration is eliminated by the addition of multivalent ions or pH adjustment, resulting in a self-assembled hydrogel. However, these charged functionalities can have profound, unintended effects on the properties of the resulting material. Access to neutral self-assembled nanostructured hydrogels may allow for distinct biological properties that are not available to highly charged analogues. Here, we designed a series of peptides to determine if self-assembly could be mediated by the steric interactions created by neutral hydroxyproline (O) domains, eliminating the need for charged residues and creating a neutral peptide hydrogel. The series of peptides, O n (SL)6O n , was studied to determine the effect of oligo-hydroxyproline on peptide self-assembly and nanostructure. We show that peptide solubility and nanofiber length increase with a higher number of hydroxyproline residues. Within this series, O5(SL)6O5 displayed the optimal properties for self-assembly and hydrogelation. In vitro, this hydrogel supports cell viability of fibroblasts, while in vivo it is infiltrated with cells and easily degraded over time without promoting a strong inflammatory response. This neutral self-assembling peptide hydrogel shows promising properties for biomedical, cell preservation, and tissue regeneration applications.

11.
ACS Biomater Sci Eng ; 5(12): 6755-6765, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33304997

RESUMEN

In this work, we develop a drug-mimicking nanofibrous peptide hydrogel that shows long-term bioactivity comparable to a small-molecule inhibitor of inducible nitric oxide synthase (iNOS). The iNOS inhibitor, N 6-(1-iminoethyl)-l-lysine (l-NIL), is a positively charged amino acid whose structure could be readily integrated into the framework of a positively charged multidomain peptide (MDP) through the modification of lysine side chains. This new l-NIL-MDP maintains the self-assembling properties of the base peptide, forming ß-sheet nanofibers, which entangle into a thixotropic hydrogel. The l-NIL-MDP hydrogel supports cell growth in vitro and allows syringe-directed delivery that persists in a targeted location in vivo for several weeks. Multiple characterization assays demonstrate the bioactivity of the l-NIL-MDP hydrogel to be comparable to the l-NIL small molecule. This includes iNOS inhibition of macrophages in vitro, reduced nitrotyrosine immunostaining in murine subcutaneous histology, and reduced serum levels of vascular endothelial growth factor in vivo. This study expands the toolbox of available peptide hydrogel scaffold designs that can modify biological activity without the need for any additional small-molecule drugs, proteins, or cells.

12.
ACS Biomater Sci Eng ; 4(4): 1386-1396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29687080

RESUMEN

In vivo, multidomain peptide (MDP) hydrogels undergo rapid cell infiltration and elicit a mild inflammatory response which promotes angiogenesis. Over time, the nanofibers are degraded and a natural collagen-based extracellular matrix is produced remodeling the artificial material into natural tissue. These properties make MDPs particularly well suited for applications in regeneration. In this work, we test the regenerative potential of MDP hydrogels in a diabetic wound healing model. When applied to full-thickness dermal wounds in genetically diabetic mice, the MDP hydrogel resulted in significantly accelerated wound healing compared to a clinically used hydrogel, as well as a control buffer. Treatment with the MDP hydrogel resulted in wound closure in 14 days, formation of thick granulation tissue including dense vascularization, innervation, and hair follicle regeneration. This suggests the MDP hydrogel could be an attractive choice for treatment of wounds in diabetic patients.

13.
Biomaterials ; 163: 67-75, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454236

RESUMEN

Recent advancements in the field of immunotherapy have yielded encouraging results for the treatment of advanced cancers. Cyclic dinucleotides (CDNs) are a powerful new class of immunotherapy drugs known as STING (Stimulator of Interferon Genes) agonists, currently in clinical trials. However, previous studies of CDNs in murine cancer models have required multiple injections, and improve survival only in relatively nonaggressive tumor models. Therefore, we sought to improve the efficacy of CDN immunotherapy by developing a novel biomaterial we call "STINGel." STINGel is an injectable peptide hydrogel that localizes and provides controlled release of CDN delivery, showing an 8-fold slower release rate compared to a standard collagen hydrogel. The carrier hydrogel is a positively charged, MultiDomain Peptide (MDP) which self-assembles to form a nanofibrous matrix and is easily delivered by syringe. The highly localized delivery of CDN from this nanostructured biomaterial affects the local histological response in a subcutaneous model, and dramatically improves overall survival in a challenging murine model of head and neck cancer compared to CDN alone or CDN delivered from a collagen hydrogel. This study demonstrates the feasibility of biomaterial-based immunotherapy platforms like STINGel as strategies for increasing the efficacy of CDN immunotherapies.


Asunto(s)
Antineoplásicos/química , Neoplasias/terapia , Nucleótidos Cíclicos/química , Péptidos/química , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Supervivencia Celular , Colágeno/química , Preparaciones de Acción Retardada , Dimerización , Portadores de Fármacos/química , Liberación de Fármacos , Femenino , Humanos , Hidrogeles , Inmunoterapia/métodos , Inyecciones Intralesiones , Ratones Endogámicos C57BL , Nanofibras/química , Neoplasias/inmunología , Nucleótidos Cíclicos/administración & dosificación , Tamaño de la Partícula , Electricidad Estática
14.
Biomaterials ; 161: 154-163, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29421552

RESUMEN

The design of materials for regenerative medicine has focused on delivery of small molecule drugs, proteins, and cells to help accelerate healing. Additionally, biomaterials have been designed with covalently attached mimics of growth factors, cytokines, or key extracellular matrix components allowing the biomaterial itself to drive biological response. While the approach may vary, the goal of biomaterial design has often centered on promoting either cellular infiltration, degradation, vascularization, or innervation of the scaffold. Numerous successful studies have utilized this complex, multicomponent approach; however, we demonstrate here that a simple nanofibrous peptide hydrogel unexpectedly and innately promotes all of these regenerative responses when subcutaneously implanted into the dorsal tissue of healthy rats. Despite containing no small molecule drugs, cells, proteins or protein mimics, the innate response to this material results in rapid cellular infiltration, production of a wide range of cytokines and growth factors by the infiltrating cells, and remodeling of the synthetic material to a natural collagen-containing ECM. During the remodeling process, a strong angiogenic response and an unprecedented degree of innervation is observed. Collectively, this simple peptide-based material provides an ideal foundational system for a variety of bioregenerative approaches.


Asunto(s)
Hidrogeles/química , Nanofibras/química , Péptidos/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Péptidos/farmacología , Ratas , Ingeniería de Tejidos
15.
Angew Chem Int Ed Engl ; 53(37): 9880-3, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25045118

RESUMEN

Fenestranes are an intriguing class of highly strained molecules possessing a quaternary carbon with bonds that deviate from the canonical tetrahedral geometry. Herein we report the discovery that the natural product pleuromutilin can be used as a structurally complex starting material for the synthesis of a series of bridged cis,cis,cis,cis-[4.5.5.5]- and cis,cis,cis,cis-[4.5.7.5]oxafenestranes through a carbocation rearrangement cascade. X-ray crystallographic analysis of several cis,cis,cis,cis-[4.5.5.5]oxafenestranes shows a significant planarization of the central tetracoordinate carbon atom and demonstrates the influence of bridgehead substituents and bridging rings on planarity.


Asunto(s)
Productos Biológicos/química , Diterpenos/química , Modelos Moleculares , Estructura Molecular , Compuestos Policíclicos , Estereoisomerismo , Pleuromutilinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...