Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(8): e26706, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867646

RESUMEN

We aimed to compare the ability of diffusion tensor imaging and multi-compartment spherical mean technique to detect focal tissue damage and in distinguishing between different connectivity patterns associated with varying clinical outcomes in multiple sclerosis (MS). Seventy-six people diagnosed with MS were scanned using a SIEMENS Prisma Fit 3T magnetic resonance imaging (MRI), employing both conventional (T1w and fluid-attenuated inversion recovery) and advanced diffusion MRI sequences from which fractional anisotropy (FA) and microscopic FA (µFA) maps were generated. Using automated fiber quantification (AFQ), we assessed diffusion profiles across multiple white matter (WM) pathways to measure the sensitivity of anisotropy diffusion metrics in detecting localized tissue damage. In parallel, we analyzed structural brain connectivity in a specific patient cohort to fully grasp its relationships with cognitive and physical clinical outcomes. This evaluation comprehensively considered different patient categories, including cognitively preserved (CP), mild cognitive deficits (MCD), and cognitively impaired (CI) for cognitive assessment, as well as groups distinguished by physical impact: those with mild disability (Expanded Disability Status Scale [EDSS] <=3) and those with moderate-severe disability (EDSS >3). In our initial objective, we employed Ridge regression to forecast the presence of focal MS lesions, comparing the performance of µFA and FA. µFA exhibited a stronger association with tissue damage and a higher predictive precision for focal MS lesions across the tracts, achieving an R-squared value of .57, significantly outperforming the R-squared value of .24 for FA (p-value <.001). In structural connectivity, µFA exhibited more pronounced differences than FA in response to alteration in both cognitive and physical clinical scores in terms of effect size and number of connections. Regarding cognitive groups, FA differences between CP and MCD groups were limited to 0.5% of connections, mainly around the thalamus, while µFA revealed changes in 2.5% of connections. In the CP and CI group comparison, which have noticeable cognitive differences, the disparity was 5.6% for FA values and 32.5% for µFA. Similarly, µFA outperformed FA in detecting WM changes between the MCD and CI groups, with 5% versus 0.3% of connections, respectively. When analyzing structural connectivity between physical disability groups, µFA still demonstrated superior performance over FA, disclosing a 2.1% difference in connectivity between regions closely associated with physical disability in MS. In contrast, FA spotted a few regions, comprising only 0.6% of total connections. In summary, µFA emerged as a more effective tool than FA in predicting MS lesions and identifying structural changes across patients with different degrees of cognitive and global disability, offering deeper insights into the complexities of MS-related impairments.


Asunto(s)
Imagen de Difusión Tensora , Esclerosis Múltiple , Sustancia Blanca , Humanos , Femenino , Masculino , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Anisotropía , Adulto , Imagen de Difusión Tensora/métodos , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/etiología
2.
Sci Rep ; 13(1): 3565, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864113

RESUMEN

The relationship between brain diffusion microstructural changes and disability in multiple sclerosis (MS) remains poorly understood. We aimed to explore the predictive value of microstructural properties in white (WM) and grey matter (GM), and identify areas associated with mid-term disability in MS patients. We studied 185 patients (71% female; 86% RRMS) with the Expanded Disability Status Scale (EDSS), timed 25-foot walk (T25FW), nine-hole peg test (9HPT), and Symbol Digit Modalities Test (SDMT) at two time-points. We used Lasso regression to analyse the predictive value of baseline WM fractional anisotropy and GM mean diffusivity, and to identify areas related to each outcome at 4.1 years follow-up. Motor performance was associated with WM (T25FW: RMSE = 0.524, R2 = 0.304; 9HPT dominant hand: RMSE = 0.662, R2 = 0.062; 9HPT non-dominant hand: RMSE = 0.649, R2 = 0.139), and SDMT with GM diffusion metrics (RMSE = 0.772, R2 = 0.186). Cingulum, longitudinal fasciculus, optic radiation, forceps minor and frontal aslant were the WM tracts most closely linked to motor dysfunction, and temporal and frontal cortex were relevant for cognition. Regional specificity related to clinical outcomes provide valuable information that can be used to develop more accurate predictive models that could improve therapeutic strategies.


Asunto(s)
Imagen de Difusión Tensora , Esclerosis Múltiple , Humanos , Femenino , Masculino , Esclerosis Múltiple/diagnóstico por imagen , Corteza Cerebral , Lóbulo Frontal , Anisotropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...