Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1998, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032404

RESUMEN

Engrailed2 (En2) is a transcription factor that transfers from cell to cell through unconventional pathways. The poorly understood internalization mechanism of this cationic protein is proposed to require an initial interaction with cell-surface glycosaminoglycans (GAGs). To decipher the role of GAGs in En2 internalization, we have quantified the entry of its homeodomain region in model cells that differ in their content in cell-surface GAGs. The binding specificity to GAGs and the influence of this interaction on the structure and dynamics of En2 was also investigated at the amino acid level. Our results show that a high-affinity GAG-binding sequence (RKPKKKNPNKEDKRPR), upstream of the homeodomain, controls En2 internalization through selective interactions with highly-sulfated heparan sulfate GAGs. Our data underline the functional importance of the intrinsically disordered basic region upstream of En2 internalization domain, and demonstrate the critical role of GAGs as an entry gate, finely tuning homeoprotein capacity to internalize into cells.


Asunto(s)
Glicosaminoglicanos , Heparitina Sulfato , Heparitina Sulfato/metabolismo , Glicosaminoglicanos/metabolismo , Factores de Transcripción , Proteínas de Homeodominio/genética , Sulfatos , Sulfatos de Condroitina/metabolismo
2.
Biomacromolecules ; 24(1): 462-470, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563405

RESUMEN

Sulfated glycosaminoglycans (GAGs) are fundamental constituents of both the cell surface and extracellular matrix. By playing a key role in cell-cell and cell-matrix interactions, GAGs are involved in many physiological and pathological processes. To design GAG mimetics with similar therapeutic potential as the natural ones, the specific structural features, among them sulfate content, sulfation pattern, and chain length, should be considered. In the present study, we describe a sulfation method based on microwave radiation to obtain highly sulfated derivatives as GAG mimetics. The starting low-molecular-weight (LMW) derivative was prepared from the infernan exopolysaccharide, a highly branched naturally slightly sulfated heteropolysaccharide synthesized by the deep-sea hydrothermal vent bacterium Alteromonas infernus. LMW highly sulfated infernan derivatives obtained by conventional heating sulfation have already been shown to display GAG-mimetic properties. Here, the potential of microwave-assisted sulfation versus that of the conventional method to obtain GAG mimetics was explored. Structural analysis by NMR revealed that highly sulfated derivatives from the two methods shared similar structural features, emphasizing that microwave-assisted sulfation with a 12-fold shorter reaction time is as efficient as the classical one.


Asunto(s)
Glicosaminoglicanos , Microondas , Glicosaminoglicanos/química , Sulfatos/química , Espectroscopía de Resonancia Magnética , Matriz Extracelular/metabolismo
3.
Carbohydr Res ; 512: 108514, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35123175

RESUMEN

The chemoselective N-trifluoroacetylation of a chondroitin disaccharide obtained from controlled acid hydrolysis of a commercially available polymeric chondroitin sulfate is reported for the first time. We also described the multi-gram scale synthesis of a donor block having a benzylidene moiety further used for the expeditious and stereocontrolled synthesis of glycosides fitted with various aglycons. Stereocontrolled ß-glycosylation, sulfation and efficient N-TFA deprotection steps afforded the desired disaccharides in good yields.


Asunto(s)
Sulfatos de Condroitina , Disacáridos , Glicosilación , Sulfatos
4.
Anal Bioanal Chem ; 413(28): 7107-7117, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34651208

RESUMEN

Chondroitin sulfate (CS) glycosaminoglycans are biologically active sulfated polysaccharides that pose an analytical challenge for their structural analysis and functional evaluation. In this study, we developed a hydrophilic interaction liquid chromatography separation method and its on-line coupling to mass spectrometry (MS) allowing efficient differentiation and sensitive detection of mono-, di-, and trisulfated CS disaccharides and their positional isomers, without requiring prior derivatization. The composition of the mobile phase in terms of pH and concentration showed great influence on the chromatographic separation and was varied to allow the distinction of each CS without signal overlap for a total analysis time of 25 min. This methodology was applied to determine the disaccharide composition of biological reaction media resulting from various enzymatic transformations of CS, such as enzymatic desulfation of CS disaccharides by a CS 4-O-endosulfatase, and depolymerization of the CS endocan by chondroitinase lyase ABC.


Asunto(s)
Sulfatos de Condroitina/química , Cromatografía Liquida/métodos , Disacáridos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Sulfatos/química , Espectrometría de Masas en Tándem/métodos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Temperatura
5.
Biochem J ; 478(2): 281-298, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33351063

RESUMEN

Recently, a novel CS/DS 4-O-endosulfatase was identified from a marine bacterium and its catalytic mechanism was investigated further (Wang, W., et. al (2015) J. Biol. Chem.290, 7823-7832; Wang, S., et. al (2019) Front. Microbiol.10, 1309). In the study herein, we provide new insight about the structural characteristics of the substrate which determine the activity of this enzyme. The substrate specificities of the 4-O-endosulfatase were probed by using libraries of structure-defined CS/DS oligosaccharides issued from synthetic and enzymatic sources. We found that this 4-O-endosulfatase effectively remove the 4-O-sulfate of disaccharide sequences GlcUAß1-3GalNAc(4S) or GlcUAß1-3GalNAc(4S,6S) in all tested hexasaccharides. The sulfated GalNac residue is resistant to the enzyme when adjacent uronic residues are sulfated as shown by the lack of enzymatic desulfation of GlcUAß1-3GalNAc(4S) connected to a disaccharide GlcUA(2S)ß1-3GalNAc(6S) in an octasaccharide. The 3-O-sulfation of GlcUA was also shown to hinder the action of this enzyme. The 4-O-endosulfatase exhibited an oriented action from the reducing to the non-reducing whatever the saturation or not of the non-reducing end. Finally, the activity of the 4-O-endosulfatase decreases with the increase in substrate size. With the deeper understanding of this novel 4-O-endosulfatase, such chondroitin sulfate (CS)/dermatan sulfate (DS) sulfatase is a useful tool for exploring the structure-function relationship of CS/DS.


Asunto(s)
Sulfatasas/química , Sulfatasas/metabolismo , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Disacáridos/análisis , Disacáridos/química , Espectrometría de Masas , Especificidad por Sustrato
6.
Biochim Biophys Acta Gen Subj ; 1865(3): 129837, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33378708

RESUMEN

In this paper, we introduce a comprehensive kinetic model describing the enzymatic cleavage of hyaluronan (HA) by bovine testicular hyaluronidase (BTH). Our theory focuses specifically on the late stage of the hydrolysis, where the concentrations of a limited number of oligomers may be determined experimentally with accuracy as functions of time. The present model was applied to fit different experimental sets of kinetic data collected by capillary electrophoresis at two HA concentrations and three concentrations of PEG crowder (0, 10, 17% w/w). Our theory seems to apply universally, irrespective of HA concentration and crowding conditions, reproducing to an excellent extent the time evolution of the individual molar fractions of oligomers. Remarkably, we found that the reaction mechanism in the late degradation stage essentially reduces to the cleavage or transfer of active dimers. While the recombination of dimers is the fastest reaction, the rate-limiting step turns out to be invariably the hydrolysis of hexamers. Crowding, HA itself or other inert, volume-excluding agents, clearly boosts recombination events and concomitantly slows down all fragmentation pathways. Overall, our results bring a novel and comprehensive quantitative insight into the complex reaction mechanism underlying enzymatic HA degradation. Importantly, rationalizing the effect of crowding not only brings the intricate conditions of in-vivo settings a little closer, but also emerges as a powerful tool to help pinpointing relevant kinetic pathways in complex systems.


Asunto(s)
Ácido Hialurónico/química , Hialuronoglucosaminidasa/química , Animales , Bovinos , Dimerización , Pruebas de Enzimas , Hialuronoglucosaminidasa/aislamiento & purificación , Hidrólisis , Cinética , Masculino , Polietilenglicoles/química , Testículo/química
7.
Chem Commun (Camb) ; 56(73): 10746-10749, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32789356

RESUMEN

Here we propose a general strategy to label carbohydrates with N-methyl-anthranilic acid at the anomeric position. Through two examples, we demonstrate that the generated glycoprobes are suitable for fluorescence-based binding/competition assays. Our approach is expected to readily generate series of glycoprobes dedicated to screening assays for the discovery of drugs targeting carbohydrate-protein interactions.


Asunto(s)
Colorantes Fluorescentes/química , Glicósidos/química , ortoaminobenzoatos/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Glicósidos/síntesis química , Glicósidos/metabolismo , Proteínas de Unión a Maltosa/metabolismo , Unión Proteica , Espectrometría de Fluorescencia , ortoaminobenzoatos/síntesis química , ortoaminobenzoatos/metabolismo
8.
Org Biomol Chem ; 18(25): 4831-4842, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32608461

RESUMEN

Proteoglycans (PGs) are complex macromolecules that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linker. Biosynthesis of PGs is complex and involves a large number of glycosyltranferases. We report herein for the first time the synthesis of a collection of various sulfoforms of the disaccharide GlcA-1,3-ß-d-Gal and trisaccharides GlcNAc-1,4-α-d-GlcA-1,3-ß-d-Gal and GalNAc-1,4-ß-d-GlcA-1,3-ß-d-Gal using a regioselective glycosylation. Preliminary results on the impact of sulfation of these disaccharides upon recombinant chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate chain initiation is also reported.


Asunto(s)
Oligosacáridos/síntesis química , Proteoglicanos/química , Glicosilación , Conformación Molecular , Oligosacáridos/química , Estereoisomerismo
9.
Anal Bioanal Chem ; 412(17): 4195-4207, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32377866

RESUMEN

To mimic the activity of hyaluronidase in natural environment, the hydrolysis of hyaluronic acid (HA) by hyaluronidase was investigated for the first time in the presence of crowding agents using capillary electrophoresis (CE) as a simple and reliable technique for conducting enzymatic assay. Polyethylene glycol (PEG) 6000 was selected as a model crowder and the hyaluronic acid degradation catalyzed by bovine testes hyaluronidase (BTH) was carried out at different PEG concentrations (0%, 10%, and 17%). After optimization of the CE analytical method and enzymatic assay, the degradation products were monitored at different HA concentrations. At 10% of PEG and 0.3 mg mL-1 of HA, the activity of the enzyme was significantly reduced showing inconvenient interactions of PEG with the hyaluronidase blocking the release of hydrolysis products. A similar reduction of hyaluronidase activity was observed at 1 mg mL-1 of HA due to the presumable formation of the BTH-substrate complex. The experimental curves obtained by CE also evidence that the overall kinetics are governed by the hydrolysis of hexasaccharide intermediates. Finally, the effect of PEG on hyaluronidase activity was evaluated in the presence of natural or synthetic inhibitors. Our results show a significant difference of the inhibitors' affinity toward hyaluronidase in the presence of PEG. Surprisingly, the presence of the crowding agent results in a loss of the inhibition effect of small polycyclic inhibitors, while larger charged inhibitors were less affected. In this work, CE analyses confirm the importance of mimicking the cellular environment for the discovery and development of reliable inhibitors. Graphical abstract.


Asunto(s)
Electroforesis Capilar/métodos , Pruebas de Enzimas/métodos , Hialuronoglucosaminidasa/metabolismo , Animales , Bovinos , Ácido Hialurónico/metabolismo , Hidrólisis , Cinética , Masculino , Polietilenglicoles/metabolismo , Testículo/enzimología
10.
Carbohydr Res ; 475: 56-64, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30836261

RESUMEN

The activity of eukaryote hydrolase-type of hyaluronidases was studied using a miniaturized capillary electrophoresis (CE) assay developed in our laboratory. Few nanoliters of reagents are sufficient and no labeling is required for this assay. The effect of natural and original synthetic effectors of hyaluronidase was evaluated. These di- and trisaccharides from linkage region of proteoglycans were synthesized in 30-40 steps from monomeric units using classical protection, deprotection, glycosylation and deoxygenation reactions. The influence of the chain length (di/trisaccharide), the modification type (methoxy/deoxy) and its position (2/4/6) was studied. The inhibition and/or activation percentages were determined at two concentrations of effectors; 0.2 mM and 2 mM. The half maximal effective concentration (EC50) values were evaluated (n = 2) for the most effective inhibitors (∼1 mM) and activators (∼0.2 mM). Results showed that hyaluronidase was mostly inhibited in a concentration-dependent fashion by a deoxy modification and activated by a methoxy modification. Trisaccharides were found to be more effective on hyaluronidase activity than disaccharides. Position 4 was found to be more favorable for hyaluronidase activity than position 6 and the activity in position 2 was negligible. For a better understanding of the enzyme function mode, the inhibition constant (Ki) was also evaluated by CE (Ki ∼ 2 mM). These results are of great interest especially as few activators of hyaluronidase are presented in the literature.


Asunto(s)
Electroforesis Capilar , Pruebas de Enzimas , Inhibidores Enzimáticos/farmacología , Hialuronoglucosaminidasa/antagonistas & inhibidores , Oligosacáridos/farmacología , Animales , Conformación de Carbohidratos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Hialuronoglucosaminidasa/metabolismo , Oligosacáridos/química , Relación Estructura-Actividad
11.
Org Biomol Chem ; 15(45): 9653-9669, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29116283

RESUMEN

Proteoglycans (PGs) are complex macromolecules that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linker. The biosynthesis of PGs is complex and involves a large number of glycosyltranferases. Here we present a structure-activity study of human ß4GalT7, which transfers the first Gal residue onto a xyloside moiety of the linkage region. An efficient and regiocontrolled synthesis of a library of modified analogs of 4-methylumbelliferyl xyloside (XylMU) is reported herein. Hydroxyl groups at the position C-2, C-3 or C-4 have been epimerized and/or replaced by a hydrogen or a fluorine, while the anomeric oxygen was replaced by either a sulfur or a sulfone. The effect of these compounds on human ß4GalT7 activity in vitro and on GAG biosynthesis in cellulo was then evaluated.


Asunto(s)
Galactosiltransferasas/metabolismo , Glicósidos/biosíntesis , Bibliotecas de Moléculas Pequeñas/metabolismo , Conformación de Carbohidratos , Glicósidos/química , Humanos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
12.
Rapid Commun Mass Spectrom ; 31(23): 2003-2010, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28901031

RESUMEN

RATIONALE: Chondroitin sulfate (CS) glycosaminoglycans are bioactive sulfated polysaccharides comprising repeating units of uronic acid and N-acetyl galactose sulfated at various positions. The optimal length and sulfation pattern of the CS bioactive sequences remain elusive so that structure-activity relationships cannot be easily established. Development of efficient analytical methods allowing the differentiation of the various sulfation patterns of CS sequences is therefore of particular importance to correlate their biological functions to the sulfation pattern. METHODS: Discrimination of different oligomers (dp2 to dp6) of synthetic chondroitin sulfate isomers was evaluated by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the negative-ion mode from deprotonated and alkali adduct species. In addition, ion mobility mass spectrometry (IMS-MS) was used to study the influence of both the degree of polymerization and sulfate group location on the gas-phase conformation of CS oligomers. RESULTS: ESI-MS/MS spectra of chondroitin sulfate isomers show characteristic product ions exclusively from alkali adduct species (Li, Na, K and Cs). Whatever the alkali adducts studied, MS/MS of chondroitin oligosaccharides sulfated at position 6 yields a specific product ion at m/z 139 while CS oligosaccharides sulfated at position 4 show a specific product ion at m/z 154. Being observed for the different CS oligomers di-, tetra- and hexasaccharides, these fragment ions are considered as diagnostic ions for chondroitin 6-O-sulfate and chondroitin 4-O-sulfate, respectively. IMS-MS experiments reveal that collision cross-sections (CCS) of CS oligomers with low charge states evolved linearly with degrees of polymerization indicating a similar gas-phase conformation. CONCLUSIONS: This study allows the fast and unambiguous differentiation of CS isomers sulfated at position 6 or 4 for both saturated and unsaturated analogues from MS/MS experiments. In addition, the CCS linear evolution of CS oligomers in function of the degree of polymerization indicates that no folding occurs even for hexasaccharides.

13.
Anal Chim Acta ; 951: 140-150, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-27998482

RESUMEN

The biology of hyaluronidase activity on age related turnover of the hyaluronic acid (HA) in skin dermis and epidermis has not been established. Elucidation of this phenomenon enables discovery of novel compounds for skin health. As a simple and green technique, capillary electrophoresis (CE) was used for the first time for the determination of the kinetic constants (Km, Vmax and IC50) of the enzymatic degradation of HA. Reaction products were identified using CE/high-resolution mass spectrometry (HRMS) after appropriate optimization. Best results in terms of signal sensitivity were obtained using 10 mM ammonium acetate (pH 9.0) BGE, a sheath liquid composed of methanol-water (80:20, v/v) with 0.02% (v/v) formic acid at 10 µL min-1 and an ESI voltage at -4 kV. Km and Vmax were determined (n = 3) using CE/UV at 200 nm as 0.24 ± 0.02 mg mL-1 and 150.4 ± 0.1 nM s-1, respectively. They were also successfully obtained by CE/HRMS (n = 3) with Km of 0.49 ± 0.02 mg mL-1 and Vmax of 155.7 ± 0.2 nM s-1. IC50 of a standard natural inhibitor, epigallocatechin gallate, was also determined by CE-UV/HRMS. Kinetic constant values obtained by CE compared well with literature which validated the developed CE-based assay. In addition, the activity of homemade tetrasaccharides of biotinylated chondroitin sulfate CS-A or CS-C (4- or 6- sulfated in a homogeneous or heterogeneous way) on the hydrolysis reaction of hyaluronidase was evaluated. Hyaluronidase was mostly dose-dependently inhibited by CS-A tetrasaccharides sulfated in a homogeneous way. Two trisaccharides from truncated linkage region of proteoglycans were also tested as inhibitors or activators. CE-based assay showed that even a small modification of one hydroxyl group changes the influence on hyaluronidase activity. CE-based assay can be used for the screening of natural and synthetic inhibitors of hyaluronidase activity for cosmetic and therapeutic applications.


Asunto(s)
Electroforesis Capilar , Hialuronoglucosaminidasa/química , Espectrometría de Masas , Cinética
14.
Org Biomol Chem ; 14(33): 7962-71, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27492660

RESUMEN

Efficient and stereocontrolled preparation of a library of variously sulfated biotinylated tetra- and pentasaccharides possessing the backbone of the partial linkage region plus the first chondroitin sulfate mono- or disaccharide unit (d-GlcA)n-ß-d-(1,3)-GalNAc-ß-d-(1,4)-GlcA-ß-d-(1,3)-Gal-ß-d-(1,3)-Gal (n = 0 or 1) is reported herein for the first time. The synthesis of these compounds was achieved using common key intermediates and a disaccharide building block obtained by semisynthesis. Stereoselective glycosylation, selective protection/deprotection steps, efficient reduction of the N-trichloroacetyl group into the corresponding N-acetyl group, efficient sulfation strategy, deprotection and biotinylation afforded target oligomers in good yield with high purity.


Asunto(s)
Condroitín/química , Monosacáridos/síntesis química , Oligosacáridos/síntesis química , Proteoglicanos/química , Biotinilación , Conformación de Carbohidratos , Monosacáridos/química , Oligosacáridos/química , Proteoglicanos/síntesis química , Estereoisomerismo
15.
J Biol Chem ; 290(12): 7658-70, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25568325

RESUMEN

Among glycosaminoglycan (GAG) biosynthetic enzymes, the human ß1,4-galactosyltransferase 7 (hß4GalT7) is characterized by its unique capacity to take over xyloside derivatives linked to a hydrophobic aglycone as substrates and/or inhibitors. This glycosyltransferase is thus a prime target for the development of regulators of GAG synthesis in therapeutics. Here, we report the structure-guided design of hß4GalT7 inhibitors. By combining molecular modeling, in vitro mutagenesis, and kinetic measurements, and in cellulo analysis of GAG anabolism and decorin glycosylation, we mapped the organization of the acceptor binding pocket, in complex with 4-methylumbelliferone-xylopyranoside as prototype substrate. We show that its organization is governed, on one side, by three tyrosine residues, Tyr(194), Tyr(196), and Tyr(199), which create a hydrophobic environment and provide stacking interactions with both xylopyranoside and aglycone rings. On the opposite side, a hydrogen-bond network is established between the charged amino acids Asp(228), Asp(229), and Arg(226), and the hydroxyl groups of xylose. We identified two key structural features, i.e. the strategic position of Tyr(194) forming stacking interactions with the aglycone, and the hydrogen bond between the His(195) nitrogen backbone and the carbonyl group of the coumarinyl molecule to develop a tight binder of hß4GalT7. This led to the synthesis of 4-deoxy-4-fluoroxylose linked to 4-methylumbelliferone that inhibited hß4GalT7 activity in vitro with a Ki 10 times lower than the Km value and efficiently impaired GAG synthesis in a cell assay. This study provides a valuable probe for the investigation of GAG biology and opens avenues toward the development of bioactive compounds to correct GAG synthesis disorders implicated in different types of malignancies.


Asunto(s)
Inhibidores Enzimáticos/química , Galactosiltransferasas/metabolismo , Xilosidasas/antagonistas & inhibidores , Dominio Catalítico , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Galactosiltransferasas/química , Humanos , Cinética , Modelos Moleculares , Sondas Moleculares
16.
Carbohydr Res ; 402: 35-43, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25486221

RESUMEN

The synthesis of biotinylated conjugates of oligomers of the basic repeating unit of chondroitin sulfate E (CS-E) with the sequence [GlcA-4,6-disulfated GalNAc]n is reported herein for the first time. An efficient and stereocontrolled preparation of di-, tetra-, and hexasaccharide derivatives was achieved using a common key disaccharide intermediate in an iterative way. An unexpected and never reported side reaction on the carbonyl group of the levulinate ester was observed during a coupling reaction. These complex molecules should be useful to study their interactions with various proteins.


Asunto(s)
Biotinilación , Sulfatos de Condroitina/química , Disacáridos/química , Hidroxilación , Estereoisomerismo , Especificidad por Sustrato
17.
Carbohydr Res ; 353: 33-48, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22525101

RESUMEN

The synthesis of a collection, as biotinylated conjugates, of various sulfoforms of the trisaccharide ß-D-GlcpA-(1→3)-ß-D-Galp-(1→3)-ß-D-Galp, structures encountered in the linkage region of proteoglycans, is reported herein for the first time. An efficient and stereocontrolled preparation was achieved using common key intermediates in a divergent manner. These molecules should be useful probes to study the substrate specificity of the glycosyltransferases involved at the bifurcation point in the biosynthesis of proteoglycans.


Asunto(s)
Oligosacáridos/química , Oligosacáridos/síntesis química , Proteoglicanos/química , Secuencia de Carbohidratos , Datos de Secuencia Molecular
18.
Chemistry ; 15(37): 9579-95, 2009 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19621396

RESUMEN

An efficient, stereocontrolled, and highly divergent approach for the preparation of oligomers of chondroitin sulfate (CS) A, C, D, E, K, L, and M variants, starting from a single precursor easily obtained by semisynthesis from abundant natural polymer is reported for the first time. Common intermediates were designed that allowed the straightforward construction of O-sulfonated species either on the D-galactosamine unit (CS-A, -C, and -E) or on both D-glucuronic acid and D-galactosamine units (CS-D and CS-K, -L, and -M). This strategy represents a successful improvement and brings a definitive answer toward the synthesis of such complex molecules with numerous relevant biological functions.


Asunto(s)
Sulfatos de Condroitina/síntesis química , Polímeros/síntesis química , Sulfatos de Condroitina/química , Galactosamina/química , Ácido Glucurónico/química , Glicosilación , Oligosacáridos/química , Polímeros/química , Estereoisomerismo
19.
Chemistry ; 15(37): 9561-78, 2009 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19575349

RESUMEN

Controlled acid hydrolysis of polymeric chondroitin sulfate of bovine origin afforded in good yield a basic disaccharide fragment that was used for the first time as a starting material for the expeditious preparation of a set of building blocks that in turn act as versatile synthons for the efficient and stereocontrolled construction of a collection of size-defined chondroitin oligomers (from di- to octasaccharides). This step economy process allows their preparation as reducing species, fitted with a fluorophore, or as biotinylated conjugates; all useful tools for the preparation of microarrays, or as probes for the study of the biosynthesis of chondroitin sulfate.


Asunto(s)
Sulfatos de Condroitina/química , Oligosacáridos/química , Polímeros/síntesis química , Animales , Biotinilación , Bovinos , Glicosilación , Oligosacáridos/síntesis química , Polímeros/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...