Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Brain Behav Immun ; 117: 283-297, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242369

RESUMEN

Early-life stress (ELS) exposure increases the risk for mental disorders, including cognitive impairments later in life. We have previously demonstrated that an early diet with low ω6/ω3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Several studies have implicated the neuroimmune system in the ELS and diet mediated effects, but currently the molecular pathways via which ELS and early diet exert their long-term impact are not yet fully understood. Here we study the effects of ELS and dietary PUFA ratio on hippocampal mRNA and miRNA expression in adulthood, both under basal as well as inflammatory conditions. Male mice were exposed to chronic ELS by the limiting bedding and nesting material paradigm from postnatal day(P)2 to P9, and provided with a diet containing a standard (high (15:1.1)) or protective (low (1.1:1)) ω6 linoleic acid to ω3 alpha-linolenic acid ratio from P2 to P42. At P120, memory was assessed using the object location task. Subsequently, a single lipopolysaccharide (LPS) injection was given and 24 h later hippocampal genome-wide mRNA and microRNA (miRNA) expression was measured using microarray. Spatial learning deficits induced by ELS in mice fed the standard (high ω6/ω3) diet were reversed by the early-life protective (low ω6/ω3) diet. An integrated miRNA - mRNA analysis revealed that ELS and early diet induced miRNA driven mRNA expression changes into adulthood. Under basal conditions both ELS and the diet affected molecular pathways related to hippocampal plasticity, with the protective (low ω6/ω3 ratio) diet leading to activation of molecular pathways associated with improved hippocampal plasticity and learning and memory in mice previously exposed to ELS (e.g., CREB signaling and endocannabinoid neuronal synapse pathway). LPS induced miRNA and mRNA expression was strongly dependent on both ELS and early diet. In mice fed the standard (high ω6/ω3) diet, LPS increased miRNA expression leading to activation of inflammatory pathways. In contrast, in mice fed the protective diet, LPS reduced miRNA expression and altered target mRNA expression inhibiting inflammatory signaling pathways and pathways associated with hippocampal plasticity, which was especially apparent in mice previously exposed to ELS. This data provides molecular insights into how the protective (low ω6/ω3) diet during development could exert its long-lasting beneficial effects on hippocampal plasticity and learning and memory especially in a vulnerable population exposed to stress early in life, providing the basis for the development of intervention strategies.


Asunto(s)
Experiencias Adversas de la Infancia , Disfunción Cognitiva , MicroARNs , Humanos , Masculino , Animales , Ratones , MicroARNs/genética , Lipopolisacáridos/farmacología , Dieta
2.
Brain ; 146(12): 4916-4934, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849234

RESUMEN

Alzheimer's disease is a complex neurodegenerative disorder leading to a decline in cognitive function and mental health. Recent research has positioned the gut microbiota as an important susceptibility factor in Alzheimer's disease by showing specific alterations in the gut microbiome composition of Alzheimer's patients and in rodent models. However, it is unknown whether gut microbiota alterations are causal in the manifestation of Alzheimer's symptoms. To understand the involvement of Alzheimer's patient gut microbiota in host physiology and behaviour, we transplanted faecal microbiota from Alzheimer's patients and age-matched healthy controls into microbiota-depleted young adult rats. We found impairments in behaviours reliant on adult hippocampal neurogenesis, an essential process for certain memory functions and mood, resulting from Alzheimer's patient transplants. Notably, the severity of impairments correlated with clinical cognitive scores in donor patients. Discrete changes in the rat caecal and hippocampal metabolome were also evident. As hippocampal neurogenesis cannot be measured in living humans but is modulated by the circulatory systemic environment, we assessed the impact of the Alzheimer's systemic environment on proxy neurogenesis readouts. Serum from Alzheimer's patients decreased neurogenesis in human cells in vitro and were associated with cognitive scores and key microbial genera. Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogenesis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Humanos , Ratas , Animales , Hipocampo , Cognición , Microbioma Gastrointestinal/fisiología , Neurogénesis/fisiología
3.
Transl Psychiatry ; 13(1): 185, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264010

RESUMEN

Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Factor de Necrosis Tumoral alfa , Depresión , Interleucina-6 , Proteína C-Reactiva/análisis , Inflamación/genética , Inflamación/complicaciones , ARN Mensajero/genética , Expresión Génica , Ubiquitina Tiolesterasa/genética
4.
Alzheimers Res Ther ; 15(1): 101, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254223

RESUMEN

BACKGROUND: Increasing evidence links the gut microbiota (GM) to Alzheimer's disease (AD) but the mechanisms through which gut bacteria influence the brain are still unclear. This study tests the hypothesis that GM and mediators of the microbiota-gut-brain axis (MGBA) are associated with the amyloid cascade in sporadic AD. METHODS: We included 34 patients with cognitive impairment due to AD (CI-AD), 37 patients with cognitive impairment not due to AD (CI-NAD), and 13 cognitively unimpaired persons (CU). We studied the following systems: (1) fecal GM, with 16S rRNA sequencing; (2) a panel of putative MGBA mediators in the blood including immune and endothelial markers as bacterial products (i.e., lipopolysaccharide, LPS), cell adhesion molecules (CAMs) indicative of endothelial dysfunction (VCAM-1, PECAM-1), vascular changes (P-, E-Selectin), and upregulated after infections (NCAM, ICAM-1), as well as pro- (IL1ß, IL6, TNFα, IL18) and anti- (IL10) inflammatory cytokines; (3) the amyloid cascade with amyloid PET, plasma phosphorylated tau (pTau-181, for tau pathology), neurofilament light chain (NfL, for neurodegeneration), and global cognition measured using MMSE and ADAScog. We performed 3-group comparisons of markers in the 3 systems and calculated correlation matrices for the pooled group of CI-AD and CU as well as CI-NAD and CU. Patterns of associations based on Spearman's rho were used to validate the study hypothesis. RESULTS: CI-AD were characterized by (1) higher abundance of Clostridia_UCG-014 and decreased abundance of Moryella and Blautia (p < .04); (2) elevated levels of LPS (p < .03), upregulation of CAMs, Il1ß, IL6, and TNFα, and downregulation of IL10 (p < .05); (3) increased brain amyloid, plasma pTau-181, and NfL (p < 0.004) compared with the other groups. CI-NAD showed (1) higher abundance of [Eubacterium] coprostanoligenes group and Collinsella and decreased abundance of Lachnospiraceae_ND3007_group, [Ruminococcus]_gnavus_group and Oscillibacter (p < .03); (2) upregulation of PECAM-1 and TNFα (p < .03); (4) increased plasma levels of NfL (p < .02) compared with CU. Different GM genera were associated with immune and endothelial markers in both CI-NAD and CI-AD but these mediators were widely related to amyloid cascade markers only in CI-AD. CONCLUSIONS: Specific bacterial genera are associated with immune and endothelial MGBA mediators, and these are associated with amyloid cascade markers in sporadic AD. The physiological mechanisms linking the GM to the amyloid cascade should be further investigated to elucidate their potential therapeutic implications.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Factor de Necrosis Tumoral alfa , Eje Cerebro-Intestino , Lipopolisacáridos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , ARN Ribosómico 16S , Interleucina-10 , Interleucina-6 , NAD , Biomarcadores , Péptidos beta-Amiloides
5.
Trials ; 22(1): 920, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906222

RESUMEN

BACKGROUND: Emotional dysregulation (ED) constitutes a relevant factor involved in the onset and maintenance of many mental disorders. Targeting ED during adolescence could be a determinant both to identify high-risk individuals and to promote preventive interventions. This study will aim to evaluate the impact of a brief Dialectical Behavioral Therapy (DBT)-based intervention for adolescent students by measuring changes in emotional regulation skills and impulsive behaviors. Moreover, alterations in biological features related to stress response and inflammation will be assessed as potential biological variables associated with ED. METHODS: This is a randomized trial. A total of 20 classes of adolescent students will be recruited among high schools in Brescia, a city in northern Italy. They will be randomized to the psychoeducational intervention (experimental group) or to a control condition (control group). The intervention will be based on DBT Skills Training for Emotional Problem Solving for Adolescents, and will consist of four monthly, 2-h sessions (for a total of 8 h) scheduled during regular school time. Participants will be assessed at baseline, post-intervention, and at 3 and 6 months of follow-up. The primary outcome measures will be represented by changes in the use of emotional regulation skills and by changes in the frequency of impulsive behaviors. Salivary samples will be collected at baseline and post-intervention to explore possible biological features underlying ED. DISCUSSION: Data from the present project will offer the opportunity to better understand the complex phenomenon of ED. Repeated assessment will cover several domains (emotional, behavioral, social, biological) as potential factors associated with ED. Moreover, it will be possible to establish the effect of the proposed intervention, thus helping to improve knowledge on the impact of school-based universal preventive programs. Finally, the current trial will propose an integrated screening and intervention-based model. Ultimately, this could reduce barriers to youths' mental health care by fostering collaboration between schools and mental health services. TRIAL REGISTRATION: ClinicalTrials.gov NCT04349709 . Registered on April 16, 2020.


Asunto(s)
Regulación Emocional , Trastornos Mentales , Servicios de Salud Mental , Adolescente , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Servicios de Salud Escolar , Instituciones Académicas
6.
Front Psychiatry ; 12: 722335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819883

RESUMEN

Major depressive disorder (MDD) is a complex mental disorder where the neurochemical, neuroendocrine, immune, and metabolic systems are impaired. The microbiota-gut-brain axis is a bidirectional network where the central and enteric nervous systems are linked through the same endocrine, immune, neural, and metabolic routes dysregulated in MDD. Thus, gut-brain axis abnormalities in MDD patients may, at least in part, account for the symptomatic features associated with MDD. Recent investigations have suggested that the oral microbiome also plays a key role in this complex molecular picture of relationships. As on one hand there is a lot of what we know and on the other hand little of what we still need to know, we structured this review focusing, in the first place, on putting all pieces of this complex puzzle together, underlying the endocrine, immune, oxidative stress, neural, microbial neurotransmitters, and metabolites molecular interactions and systems lying at the base of gut microbiota (GM)-brain-depression interphase. Then, we focused on promising but still under-explored areas of research strictly linked to the GM and potentially involved in MDD development: (i) the interconnection of GM with oral microbiome that can influence the neuroinflammation-related processes and (ii) gut phageome (bacteria-infecting viruses). As conclusions and future directions, we discussed potentiality but also pitfalls, roadblocks, and the gaps to be bridged in this exciting field of research. By the development of a broader knowledge of the biology associated with MDD, with the inclusion of the gut/oral microbiome, we can accelerate the growth toward a better global health based on precision medicine.

7.
Psychoneuroendocrinology ; 133: 105416, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34593267

RESUMEN

Exposure to early adverse experiences induces persistent changes in physiological, emotional and behavioural functions predisposing the individual to an enhanced vulnerability to develop different disorders during lifespan. The adverse outcomes depend upon the timing of the stressful experiences, and in this contest, adolescence represents a key sensitive period for brain development. Among the biological systems involved, gut microbiota has recently been proposed to act on the interplay between the stress response, brain functions and immune system, through the gut-brain axis communication. In the current study we aimed to evaluate, in a preclinical model, changes over time in the microbiota community structure in physiological condition and in response to stress during adolescence. We also aimed to correlate the microbiota composition to the inflammatory status in brain. We used the preclinical model of social deprivation in rats during adolescence, based on the lack of all social contacts, for four weeks after weaning, followed by re-socialization until adulthood. We collected fecal samples at different post-natal days to investigate the short- and long-lasting effects of social isolation on gut microbiota composition and we collected brain areas (dorsal and ventral hippocampus) samples at killing to measure a panel of inflammatory and microglia activation markers. 16 S metataxonomic sequencing analysis revealed that microbial changes were influenced by age in both isolated and controls rats, regardless of sex, whereas social isolation impacted the microbial composition in a sex-dependent manner. A multivariate analysis showed that social isolation induced short-term gut microbiota alterations in females but not in males. We also identified several stress-related genera associated with social isolation condition. In brain areas we found a specific inflammatory pattern, in dorsal and ventral hippocampus, that significantly correlated with gut microbiota composition. Overall, in this study we reported a novel sex-specific association between gut microbiota composition and inflammatory response related to social isolation paradigm during adolescence, suggesting that stressful experiences during this sensitive period could have a long-lasting impact on the development of different biological systems that could in turn influence the vulnerability to develop mental disorders later in life.


Asunto(s)
Microbioma Gastrointestinal , Hipocampo , Inflamación , Aislamiento Social , Animales , Distinciones y Premios , Femenino , Microbioma Gastrointestinal/fisiología , Hipocampo/fisiopatología , Inflamación/fisiopatología , Masculino , Trastornos Mentales/epidemiología , Ratas , Aislamiento Social/psicología
8.
Front Psychiatry ; 12: 629137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054596

RESUMEN

Background: No study investigated the association between stress exposure in different stages of life and metabolic dysfunction. Aim: We explore the association between stress exposure and several biomarkers related to glucose metabolism (insulin, c-peptide, GIP, GLP-1, glucagon) in a group of 72 healthy individuals. Method: We used the Childhood Experience of Care and Abuse-Questionnaire (CECA-Q) and a modified version of the Life Events Scale to define exposure to stress, according to four categories: no exposure to childhood trauma (CT) nor to stressful life events (SLEs) (46%), only to CT (25%), only to SLEs (21%), to both (8%). Results: We found that c-peptide (p = 0.006) and insulin (p = 0.002) levels differed among the four categories: 0.77 ng/ml (SD 0.27) and 0.21 ng/ml (SD 0.06) for none, 0.77 (SD 0.37) and 0.20 (SD 0.08) for only SLEs, 0.88 (SD 0.39) and 0.27 (SD 0.12) for only CT, 1.33 (SD 0.57) and 0.40 (SD 0.28) for both, respectively. The highest levels of biomarkers were found in subjects exposed to both CT and SLEs. Conclusion: Our preliminary results seem to suggest that CT might be specifically associated with a dysfunction of glucose metabolism, which might increase the risk of poorer health outcomes in adulthood. This association seems to be even stronger in individuals additionally exposed to SLEs in adulthood. In conclusion, if confirmed in other studies, subjects exposed to both CT and SLEs appear the most vulnerable individuals, for whom preventative interventions, such as healthy lifestyle education programs, might ameliorate the risk of developing metabolic abnormalities.

9.
Psychoneuroendocrinology ; 124: 104794, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33429258

RESUMEN

Early life stress, especially when experienced during the first period of life, affects the brain developmental trajectories leading to an enhanced vulnerability for stress-related psychiatric disorders later in life. Although both clinical and preclinical studies clearly support this association, the biological pathways deregulated by such exposure, and the effects in shaping the neurodevelopmental trajectories, have so far been poorly investigated. By using the prenatal stress (PNS) model, a well-established rat model of early life stress, we performed transcriptomic analyses in the prefrontal cortex of rats exposed or not to PNS and sacrificed at different postnatal days (PNDs 21, 40, 62). We first investigated the long-lasting mechanisms and pathways affected in the PFC. We have decided to focus on the prefrontal cortex because we have previously shown that this brain region is highly sensitive to PNS exposure. We found that adult animals exposed to PNS show alterations in 389 genes, mainly involved in stress and inflammatory signalling. We then wanted to establish whether PNS exposure could also affect the neurodevelopmental trajectories in order to identify the most critical temporal window. We found that PNS rats show the most significant changes during adolescence (between PND 40 versus PND 21), with alterations of several pathways related to stress, inflammation and metabolism, which were maintained until adulthood.


Asunto(s)
Encéfalo , Corteza Prefrontal , Animales , Femenino , Embarazo , Ratas , Estrés Psicológico
10.
J Alzheimers Dis ; 78(2): 683-697, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33074224

RESUMEN

BACKGROUND: Metagenomic data support an association between certain bacterial strains and Alzheimer's disease (AD), but their functional dynamics remain elusive. OBJECTIVE: To investigate the association between amyloid pathology, bacterial products such as lipopolysaccharide (LPS) and short chain fatty acids (SCFAs: acetate, valerate, butyrate), inflammatory mediators, and markers of endothelial dysfunction in AD. METHODS: Eighty-nine older persons with cognitive performance from normal to dementia underwent florbetapir amyloid PET and blood collection. Brain amyloidosis was measured with standardized uptake value ratio versus cerebellum. Blood levels of LPS were measured by ELISA, SCFAs by mass spectrometry, cytokines by using real-time PCR, and biomarkers of endothelial dysfunction by flow cytometry. We investigated the association between the variables listed above with Spearman's rank test. RESULTS: Amyloid SUVR uptake was positively associated with blood LPS (rho≥0.32, p≤0.006), acetate and valerate (rho≥0.45, p < 0.001), pro-inflammatory cytokines (rho≥0.25, p≤0.012), and biomarkers of endothelial dysfunction (rho≥0.25, p≤0.042). In contrast, it was negatively correlated with butyrate (rho≤-0.42, p≤0.020) and the anti-inflammatory cytokine IL10 (rho≤-0.26, p≤0.009). Endothelial dysfunction was positively associated with pro-inflammatory cytokines, acetate and valerate (rho≥0.25, p≤0.045) and negatively with butyrate and IL10 levels (rho≤-0.25, p≤0.038). CONCLUSION: We report a novel association between gut microbiota-related products and systemic inflammation with brain amyloidosis via endothelial dysfunction, suggesting that SCFAs and LPS represent candidate pathophysiologic links between the gut microbiota and AD pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Disbiosis/metabolismo , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/fisiología , Lipopolisacáridos/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Disbiosis/diagnóstico por imagen , Disbiosis/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos
11.
Transl Psychiatry ; 10(1): 352, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077715

RESUMEN

We have corrected this Article post-publication, because Dr. Cattaneo's affiliation details were originally incorrect (she was affiliated with three institutions but is in fact only linked to one: Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia). These changes reflect in both the PDF and HTML versions of this Article.

12.
Front Microbiol ; 11: 1262, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636817

RESUMEN

Amplicon high-throughput sequencing of 16S ribosomal RNA (rRNA) gene is currently the most widely used technique to investigate complex gut microbial communities. Microbial identification might be influenced by several factors, including the choice of bioinformatic pipelines, making comparisons across studies difficult. Here, we compared four commonly used pipelines (QIIME2, Bioconductor, UPARSE and mothur) run on two operating systems (OS) (Linux and Mac), to evaluate the impact of bioinformatic pipeline and OS on the taxonomic classification of 40 human stool samples. We applied the SILVA 132 reference database for all the pipelines. We compared phyla and genera identification and relative abundances across the four pipelines using the Friedman rank sum test. QIIME2 and Bioconductor provided identical outputs on Linux and Mac OS, while UPARSE and mothur reported only minimal differences between OS. Taxa assignments were consistent at both phylum and genus level across all the pipelines. However, a difference in terms of relative abundance was identified for all phyla (p < 0.013) and for the majority of the most abundant genera (p < 0.028), such as Bacteroides (QIIME2: 24.5%, Bioconductor: 24.6%, UPARSE-linux: 23.6%, UPARSE-mac: 20.6%, mothur-linux: 22.2%, mothur-mac: 21.6%, p < 0.001). The use of different bioinformatic pipelines affects the estimation of the relative abundance of gut microbial community, indicating that studies using different pipelines cannot be directly compared. A harmonization procedure is needed to move the field forward.

13.
Transl Psychiatry ; 10(1): 232, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32699209

RESUMEN

The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.


Asunto(s)
Glucocorticoides , Inflamasomas , Antidepresivos , Citocinas , Humanos , ARN Mensajero , Receptores de Glucocorticoides/genética
14.
Brain Behav Immun ; 87: 777-794, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32194233

RESUMEN

Increased pro-inflammatory cytokines and an overactive hypothalamic-pituitary-adrenal (HPA) axis have both been implicated in the pathogenesis of depression. However, these explanations appear contradictory because glucocorticoids are well recognised for their anti-inflammatory effects. Two hypotheses exist to resolve this paradox: the mediating presence of glucocorticoid receptor resistance, or the possibility that glucocorticoids can potentiate inflammatory processes in some circumstances. We sought to investigate these hypotheses in a cell model with significant relevance to depression: human hippocampal progenitor cells. We demonstrated that dexamethasone in vitro given for 24 hours and followed by a 24 hours rest interval before an immune challenge potentiates inflammatory effects in these neural cells, that is, increases the IL-6 protein secretion induced by stimulation with IL-1ß (10 ng/mL for 24 hours) by + 49% (P < 0.05) at a concentration of 100 nM and by + 70% (P < 0.01) for 1 µM. These effects are time- and dose-dependent and require activation of the glucocorticoid receptor. Gene expression microarray assays using Human Gene 2.1st Array Strips demonstrated that glucocorticoid treatment up-regulated several innate immune genes, including chemokines and Nod-like receptor, NLRP6; using transcription factor binding motifs we found limited evidence that glucocorticoid resistance was induced in the cells. Our data suggests a mechanism by which stress may prime the immune system for increased inflammation and suggests that stress and inflammation may be synergistic in the pathogenesis of depression.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Dexametasona/farmacología , Glucocorticoides/farmacología , Hipocampo/metabolismo , Humanos , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Regulación hacia Arriba
15.
J Neural Transm (Vienna) ; 126(9): 1241-1258, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31350592

RESUMEN

The exposure to stressful experiences during the prenatal period and through the first years of life is known to affect the brain developmental trajectories, leading to an enhanced vulnerability for the development of several psychiatric disorders later in life. However, not all the subjects exposed to the same stressful experience develop a pathologic condition, as some of them, activating coping strategies, become more resilient. The disclosure of mechanisms associated with stress vulnerability or resilience may allow the identification of novel biological processes and potential molecules that, if properly targeted, may prevent susceptibility or potentiate resilience. Over the last years, miRNAs have been proposed as one of the epigenetic mechanisms mediating the long-lasting effects of stress. Accordingly, they are associated with the development of stress vulnerability or resilience-related strategies. Moreover, miRNAs have been proposed as possible biomarkers able to identify subjects at high risk to develop depression and to predict the response to pharmacological treatments. In this review, we aimed to provide an overview of findings from studies in rodents and humans focused on the involvement of miRNAs in the mechanisms of stress response with the final goal to identify distinct sets of miRNAs involved in stress vulnerability or resilience. In addition, we reviewed studies on alterations of miRNAs in the context of depression, showing data on the involvement of miRNAs in the pathogenesis of the disease and in the efficacy of pharmacological treatments, discussing the potential utility of miRNAs as peripheral biomarkers able to predict the treatment response.


Asunto(s)
Depresión , Epigénesis Genética , Predisposición Genética a la Enfermedad , MicroARNs/metabolismo , Efectos Tardíos de la Exposición Prenatal , Resiliencia Psicológica , Estrés Psicológico , Animales , Depresión/genética , Depresión/metabolismo , Depresión/prevención & control , Epigénesis Genética/genética , Femenino , Humanos , MicroARNs/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/metabolismo
16.
Schizophr Res ; 205: 63-75, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30057098

RESUMEN

Epidemiological and clinical studies have provided evidence for a role of both genetic and environmental factors, such as stressful experiences early in life, in the pathogenesis of Schizophrenia (SZ) and microRNAs (miRNAs) have been suggested to play a key role in the interplay between the environment and our genome. In this study, we conducted a miRNOme analysis in different samples (blood of adult subjects exposed to childhood trauma, brain (hippocampus) of rats exposed to prenatal stress and human hippocampal progenitor cells treated with cortisol) and we identified miR-125b-1-3p as a down-regulated miRNA in all the three datasets. Interestingly, a significant down-regulation was observed also in SZ patients exposed to childhood trauma. To investigate the biological systems targeted by miR-125b-1-3p and also involved in the effects of stress, we combined the list of biological pathways modulated by predicted and validated target genes of miR-125b-1-3p, with the biological systems significantly regulated by cortisol in the in vitro model. We found, as common pathways, the CXCR4 signaling, the G-alpha signaling, and the P2Y Purigenic Receptor Signaling Pathway, which are all involved in neurodevelopmental processes. Our data, obtained from the combining of miRNAs datasets across different tissues and species, identified miR-125b-1-3p as a key marker associated with the long-term effects of stress early in life and also with the enhanced vulnerability of developing SZ. The identification of such a miRNA biomarker could allow the early detection of vulnerable subjects for SZ and could provide the basis for the development of preventive therapeutic strategies.


Asunto(s)
Experiencias Adversas de la Infancia , Susceptibilidad a Enfermedades , Hipocampo/metabolismo , MicroARNs/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Trauma Psicológico , Esquizofrenia , Transducción de Señal , Estrés Psicológico , Adulto , Animales , Antiinflamatorios/farmacología , Biomarcadores/metabolismo , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Humanos , Hidrocortisona/farmacología , Masculino , Persona de Mediana Edad , Células-Madre Neurales/efectos de los fármacos , Embarazo , Trauma Psicológico/complicaciones , Trauma Psicológico/metabolismo , Ratas , Esquizofrenia/etiología , Esquizofrenia/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo
17.
Neurobiol Aging ; 49: 60-68, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27776263

RESUMEN

The pathway leading from amyloid-ß deposition to cognitive impairment is believed to be a cornerstone of the pathogenesis of Alzheimer's disease (AD). However, what drives amyloid buildup in sporadic nongenetic cases of AD is still unknown. AD brains feature an inflammatory reaction around amyloid plaques, and a specific subset of the gut microbiota (GMB) may promote brain inflammation. We investigated the possible role of the GMB in AD pathogenesis by studying the association of brain amyloidosis with (1) GMB taxa with pro- and anti-inflammatory activity; and (2) peripheral inflammation in cognitively impaired patients. We measured the stool abundance of selected bacterial GMB taxa (Escherichia/Shigella, Pseudomonas aeruginosa, Eubacterium rectale, Eubacterium hallii, Faecalibacterium prausnitzii, and Bacteroides fragilis) and the blood expression levels of cytokines (pro-inflammatory cytokines: CXCL2, CXCL10, interleukin [IL]-1ß, IL-6, IL-18, IL-8, inflammasome complex (NLRP3), tumor necrosis factor-alpha [TNF-α]; anti-inflammatory cytokines: IL-4, IL-10, IL-13) in cognitively impaired patients with (n = 40, Amy+) and with no brain amyloidosis (n = 33, Amy-) and also in a group of controls (n = 10, no brain amyloidosis and no cognitive impairment). Amy+ patients showed higher levels of pro-inflammatory cytokines (IL-6, CXCL2, NLRP3, and IL-1ß) compared with both controls and with Amy- patients. A reduction of the anti-inflammatory cytokine IL-10 was observed in Amy+ versus Amy-. Amy+ showed lower abundance of E. rectale and higher abundance of Escherichia/Shigella compared with both healthy controls (fold change, FC = -9.6, p < 0.001 and FC = +12.8, p < 0.001, respectively) and to Amy- (FC = -7.7, p < 0.001 and FC = +7.4, p = 0.003). A positive correlation was observed between pro-inflammatory cytokines IL-1ß, NLRP3, and CXCL2 with abundance of the inflammatory bacteria taxon Escherichia/Shigella (rho = 0.60, p < 0.001; rho = 0.57, p < 0.001; and rho = 0.30, p = 0.007, respectively) and a negative correlation with the anti-inflammatory E. rectale (rho = -0.48, p < 0.001; rho = -0.25, p = 0.024; rho = -0.49, p < 0.001). Our data indicate that an increase in the abundance of a pro-inflammatory GMB taxon, Escherichia/Shigella, and a reduction in the abundance of an anti-inflammatory taxon, E. rectale, are possibly associated with a peripheral inflammatory state in patients with cognitive impairment and brain amyloidosis. A possible causal relation between GMB-related inflammation and amyloidosis deserves further investigation.


Asunto(s)
Enfermedad de Alzheimer/etiología , Trastornos del Conocimiento/etiología , Microbioma Gastrointestinal/fisiología , Inflamación/etiología , Intestinos/microbiología , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Citocinas/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Placa Amiloide/etiología , Placa Amiloide/metabolismo
18.
Neuropsychopharmacology ; 41(10): 2502-11, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27067128

RESUMEN

Owing to the unique opportunity to assess individuals before and after they develop depression within a short timeframe, interferon-α (IFN-α) treatment for chronic hepatitis C virus (HCV) infection is an ideal model to identify molecular mechanisms relevant to major depression, especially in the context of enhanced inflammation. Fifty-eight patients were assessed prospectively, at baseline and monthly over 24 weeks of IFN-α treatment. New-onset cases of depression were determined using the Mini International Neuropsychiatric Interview (MINI). Whole-blood transcriptomic analyses were conducted to investigate the following: (1) baseline gene expression differences associated with future development of IFN-α-induced depression, before IFN-α, and (2) longitudinal gene expression changes from baseline to weeks 4 or 24 of IFN-α treatment, separately in those who did and did not develop depression. Transcriptomics data were analyzed using Partek Genomics Suite (1.4-fold, FDR adjusted p⩽0.05) and Ingenuity Pathway Analysis Software. Twenty patients (34%) developed IFN-α-induced depression. At baseline, 73 genes were differentially expressed in patients who later developed depression compared with those who did not. After 4 weeks of IFN-α treatment, 592 genes were modulated in the whole sample, representing primarily IFN-α-responsive genes. Substantially more genes were modulated only in patients who developed depression (n=506, compared with n=70 in patients who did not), with enrichment in inflammation-, neuroplasticity- and oxidative stress-related pathways. A similar picture was observed at week 24. Our data indicate that patients who develop IFN-α-induced depression have an increased biological sensitivity to IFN-α, as shown by larger gene expression changes, and specific signatures both as predictors and as correlates.


Asunto(s)
Antivirales/efectos adversos , Depresión , Interferón-alfa/efectos adversos , Queratinas/sangre , Estrés Oxidativo/efectos de los fármacos , Adulto , Análisis de Varianza , Estudios de Cohortes , Biología Computacional , Depresión/sangre , Depresión/inducido químicamente , Depresión/diagnóstico , Depresión/genética , Femenino , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Hepatitis C/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Escalas de Valoración Psiquiátrica , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Encuestas y Cuestionarios
19.
Front Psychiatry ; 6: 68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26005424

RESUMEN

Major depressive disorder (MDD) is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to lifelong risk for mental health outcomes. In this review, we will discuss how genetic variants (polymorphisms, SNPs) within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene × environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, we aim to underlie the role of genetic and epigenetic processes involved in stress- and neuroplasticity-related biological systems on the development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...