Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068955

RESUMEN

Following ischemic stroke, the degradation of myelin and other cellular membranes surpasses the lipid-processing capabilities of resident microglia and infiltrating macrophages. This imbalance leads to foam cell formation in the infarct and areas of secondary neurodegeneration, instigating sustained inflammation and furthering neurological damage. Given that mitochondria are the primary sites of fatty acid metabolism, augmenting mitochondrial biogenesis (MB) may enhance lipid processing, curtailing foam cell formation and post-stroke chronic inflammation. Previous studies have shown that the pharmacological activation of the ß2-adrenergic receptor (ß2-AR) stimulates MB. Consequently, our study sought to discern the effects of intensified ß2-AR signaling on MB, the processing of brain lipid debris, and neurological outcome using a mouse stroke model. To achieve this goal, aged mice were treated with formoterol, a long-acting ß2-AR agonist, daily for two and eight weeks following stroke. Formoterol increased MB in the infarct region, modified fatty acid metabolism, and reduced foam cell formation. However, it did not reduce markers of post-stroke neurodegeneration or improve recovery. Although our findings indicate that enhancing MB in myeloid cells can aid in the processing of brain lipid debris after stroke, it is important to note that boosting MB alone may not be sufficient to significantly impact stroke recovery.


Asunto(s)
Biogénesis de Organelos , Accidente Cerebrovascular , Humanos , Células Espumosas/metabolismo , Fumarato de Formoterol/farmacología , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Inflamación , Infarto , Ácidos Grasos , Lípidos
2.
J Cereb Blood Flow Metab ; 43(7): 1099-1114, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36772984

RESUMEN

The goal of this study was to evaluate changes in metabolic homeostasis during the first 12 weeks of recovery in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we compared the brain metabolomes of ipsilateral and contralateral hemispheres from aged male mice up to 12 weeks after stroke to that of age-matched naïve and sham mice. There were 707 biochemicals detected in each sample by liquid chromatography-mass spectroscopy (LC-MS). Mitochondrial fatty acid ß-oxidation, indicated by acyl carnitine levels, was increased in stroked tissue at 1 day and 4 weeks following stroke. Glucose and several glycolytic intermediates were elevated in the ipsilateral hemisphere for 12 weeks compared to the aged naïve controls, but pyruvate was decreased. Additionally, itaconate, a glycolysis inhibitor associated with activation of anti-inflammatory mechanisms in myeloid cells, was higher in the same comparisons. Spatial transcriptomics and RNA in situ hybridization localized these alterations to microglia within the area of axonal degeneration. These results indicate that chronic metabolic differences exist between stroked and control brains, including alterations in fatty acid metabolism and glycolysis within microglia in areas of degenerating white matter for at least 12 weeks after stroke.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Ratones , Masculino , Animales , Microglía/metabolismo , Sustancia Blanca/metabolismo , Accidente Cerebrovascular/metabolismo , Glucólisis , Ácidos Grasos/metabolismo
3.
J Extracell Vesicles ; 12(1): e12297, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594832

RESUMEN

Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Biomarcadores/metabolismo
4.
Pharmaceutics ; 14(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36365256

RESUMEN

Cytosolic phospholipase A2 (cPLA2) is an enzyme regulating membrane phospholipid homeostasis and the release of arachidonic acid utilized in inflammatory responses. It represents an attractive target for the treatment of Alzheimer's disease (AD). Previously, we showed that lipopolysaccharide (LPS)-induced systemic inflammation caused abnormal lipid metabolism in the brain of a transgenic AD mouse model (APdE9), which might be associated with potential changes in cPLA2 activity. Here, we investigated changes in cPLA2 expression and activity, as well as the molecular mechanisms underlying these alterations due to chronic LPS administration in the cerebral cortex of female APdE9 mice as compared to saline- and LPS-treated female wild-type mice and saline-treated APdE9 mice. The study revealed the significant effects of genotype LPS treatment on cortical cPLA2 protein expression and activity in APdE9 mice. LPS treatment resulted in nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) activation in the cortex of APdE9 mice. The gene expressions of inflammation markers Il1b and Tnfa were significantly elevated in the cortex of both APdE9 groups compared to the wild-type groups. The study provides evidence of the elevated expression and activity of cPLA2 in the brain cortex of APdE9 mice after chronic LPS treatment, which could be associated with NFkB activation.

5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142627

RESUMEN

Neuroinflammation has a major role in several brain disorders including Alzheimer's disease (AD), yet at present there are no effective anti-neuroinflammatory therapeutics available. Copper(II) complexes of bis(thiosemicarbazones) (CuII(gtsm) and CuII(atsm)) have broad therapeutic actions in preclinical models of neurodegeneration, with CuII(atsm) demonstrating beneficial outcomes on neuroinflammatory markers in vitro and in vivo. These findings suggest that copper(II) complexes could be harnessed as a new approach to modulate immune function in neurodegenerative diseases. In this study, we examined the anti-neuroinflammatory action of several low-molecular-weight, charge-neutral and lipophilic copper(II) complexes. Our analysis revealed that one compound, a thiosemicarbazone-pyridylhydrazone copper(II) complex (CuL5), delivered copper into cells in vitro and increased the concentration of copper in the brain in vivo. In a primary murine microglia culture, CuL5 was shown to decrease secretion of pro-inflammatory cytokine macrophage chemoattractant protein 1 (MCP-1) and expression of tumor necrosis factor alpha (Tnf), increase expression of metallothionein (Mt1), and modulate expression of Alzheimer's disease-associated risk genes, Trem2 and Cd33. CuL5 also improved the phagocytic function of microglia in vitro. In 5xFAD model AD mice, treatment with CuL5 led to an improved performance in a spatial working memory test, while, interestingly, increased accumulation of amyloid plaques in treated mice. These findings demonstrate that CuL5 can induce anti-neuroinflammatory effects in vitro and provide selective benefit in vivo. The outcomes provide further support for the development of copper-based compounds to modulate neuroinflammation in brain diseases.


Asunto(s)
Enfermedad de Alzheimer , Tiosemicarbazonas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Factores Quimiotácticos/metabolismo , Complejos de Coordinación , Cobre/metabolismo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/metabolismo , Metalotioneína/metabolismo , Ratones , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Tiosemicarbazonas/metabolismo , Tiosemicarbazonas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
6.
Neuroscience ; 496: 165-178, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35636730

RESUMEN

Neuroinflammation is an important feature in the pathogenesis and progression of central nervous system (CNS) diseases including Alzheimer's disease (AD). One of the widely used animal models of peripherally induced neuroinflammation and neurodegeneration is a lipopolysaccharide (LPS)-induced inflammation mouse model. An acute LPS administration has been widely used for investigation of inflammation-associated disease and testing inflammation-targeting drug candidates. In the present metabolomic, lipidomic and proteomic study, we investigated short-term effects of systemic inflammation induced by LPS administration on the mouse plasma and brain cortical and hippocampal metabolome, lipidome as well as expression of the brain cortical proteins which were shown to be involved in inflammation-associated CNS diseases. From a global perspective, the hippocampus was more vulnerable to the effects of LPS-induced systemic inflammation than the cortex. In addition, the study revealed several brain region-specific changes in metabolic pathways and lipids, such as statistically significant increase in several cortical and hippocampal phosphatidylcholines/phosphatidylethanolamines, and significantly decreased levels of brain cortical betaine after LPS treatment in mice. Moreover, LPS treatment in mice caused significantly increased protein expression of GluN1 receptor in the brain cortex. The revealed perturbations in the LPS-induced inflammation mouse model may give insight into the mechanisms underlying inflammation-associated CNS diseases. In addition, the finding of the study provide important information about the appropriate use of the model during target validation and drug candidate testing.


Asunto(s)
Lipidómica , Lipopolisacáridos , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Proteómica
7.
J Pharm Sci ; 110(12): 3953-3962, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34403652

RESUMEN

Alzheimer's disease (AD) is an incurable disease, with complex pathophysiology and a myriad of proteins involved in its development. In this study, we applied quantitative targeted absolute proteomic analysis for investigation of changes in potential AD drug targets, biomarkers, and transporters in cerebral cortices of lipopolysaccharide (LPS)-induced neuroinflammation mouse model, familial AD mice (APdE9) with and without LPS treatment as compared to age-matched wild type (WT) mice. The ABCB1, ABCG2 and GluN1 protein expression ratios between LPS treated APdE9 and WT control mice were 0.58 (95% CI 0.44-0.72), 0.65 (95% CI 0.53-0.77) and 0.61 (95% CI 0.52-0.69), respectively. The protein expression levels of other proteins such as MGLL, COX-2, CytC, ABCC1, ABCC4, SLC2A1 and SLC7A5 did not differ between the study groups. Overall, the study revealed that systemic inflammation can alter ABCB1 and ABCG2 protein expression in brain in AD, which can affect intra-brain drug distribution and play a role in AD development. Moreover, the inflammatory insult caused by peripheral infection in AD may be important factor triggering changes in GluN1 protein expression. However, more studies need to be performed in order to confirm these findings. The quantitative information about the expression of selected proteins provides important knowledge, which may help in the optimal use of the mouse models in AD drug development and better translation of preclinical data to humans.


Asunto(s)
Enfermedad de Alzheimer , Transportadoras de Casetes de Unión a ATP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Ratones Transgénicos , Proteómica , Receptores Ionotrópicos de Glutamato/metabolismo
8.
Sci Rep ; 11(1): 13076, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158563

RESUMEN

Peripheral infections followed by systemic inflammation may contribute to the onset of Alzheimer`s disease (AD) and accelerate the disease progression later in life. Yet, the impact of systemic inflammation on the plasma and brain tissue metabolome and lipidome in AD has not been investigated. In this study, targeted metabolomic and untargeted lipidomic profiling experiments were performed on the plasma, cortices, and hippocampi of wild-type (WT) mice and transgenic APdE9 mice after chronic lipopolysaccharide (LPS) treatment, as well as saline-treated APdE9 mice. The lipidome and the metabolome of these mice were compared to saline-treated WT animals. In the brain tissue of all three models, the lipidome was more influenced than the metabolome. The LPS-treated APdE9 mice had the highest number of changes in brain metabolic pathways with significant alterations in levels of lysine, myo-inositol, spermine, phosphocreatine, acylcarnitines and diacylglycerols, which were not observed in the saline-treated APdE9 mice. In the WT mice, the effect of the LPS administration on metabolome and lipidome was negligible. The study provided exciting information about the biochemical perturbations due to LPS-induced inflammation in the transgenic AD model, which can significantly enhance our understanding of the role of systemic inflammation in AD pathogenesis.


Asunto(s)
Precursor de Proteína beta-Amiloide/inmunología , Encéfalo/metabolismo , Inflamación/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Lipidómica/métodos , Masculino , Metaboloma , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/metabolismo
9.
Aging Cell ; 20(1): e13287, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33369048

RESUMEN

Ischemic stroke, the third leading cause of death in the Western world, affects mainly the elderly and is strongly associated with comorbid conditions such as atherosclerosis or diabetes, which are pathologically characterized by increased inflammation and are known to influence the outcome of stroke. Stroke incidence peaks during influenza seasons, and patients suffering from infections such as pneumonia prior to stroke exhibit a worse stroke outcome. Earlier studies have shown that comorbidities aggravate the outcome of stroke, yet the mediators of this phenomenon remain obscure. Here, we show that acute peripheral inflammation aggravates stroke-induced neuronal damage and motor deficits specifically in aged mice. This is associated with increased levels of plasma proinflammatory cytokines, rather than with an increase of inflammatory mediators in the affected brain parenchyma. Nascent transcriptomics data with mature microRNA sequencing were used to identify the neuron-specific miRNome, in order to decipher dysregulated miRNAs in the brains of aged animals with stroke and co-existing inflammation. We pinpoint a previously uninvestigated miRNA in the brain, miR-127, that is highly neuronal, to be associated with increased cell death in the aged, LPS-injected ischemic mice. Target prediction tools indicate that miR-127 interacts with several basally expressed neuronal genes, and of these we verify miR-127 binding to Psmd3. Finally, we report reduced expression of miR-127 in human stroke brains. Our results underline the impact of peripheral inflammation on the outcome of stroke in aged subjects and pinpoint molecular targets for restoring endogenous neuronal capacity to combat ischemic stroke.


Asunto(s)
Isquemia Encefálica/genética , Inflamación/genética , MicroARNs/metabolismo , Envejecimiento , Animales , Isquemia Encefálica/mortalidad , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
10.
J Neuroinflammation ; 17(1): 271, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933545

RESUMEN

BACKGROUND: Increased physical exercise improves cognitive function and reduces pathology associated with Alzheimer's disease (AD). However, the mechanisms underlying the beneficial effects of exercise in AD on the level of specific brain cell types remain poorly investigated. The involvement of astrocytes in AD pathology is widely described, but their exact role in exercise-mediated neuroprotection warrant further investigation. Here, we investigated the effect of long-term voluntary physical exercise on the modulation of the astrocyte state. METHODS: Male 5xFAD mice and their wild-type littermates had free access to a running wheel from 1.5 to 7 months of age. A battery of behavioral tests was used to assess the effects of voluntary exercise on cognition and learning. Neuronal loss, impairment in neurogenesis, beta-amyloid (Aß) deposition, and inflammation were evaluated using a variety of histological and biochemical measurements. Sophisticated morphological analyses were performed to delineate the specific involvement of astrocytes in exercise-induced neuroprotection in the 5xFAD mice. RESULTS: Long-term voluntary physical exercise reversed cognitive impairment in 7-month-old 5xFAD mice without affecting neurogenesis, neuronal loss, Aß plaque deposition, or microglia activation. Exercise increased glial fibrillary acid protein (GFAP) immunoreactivity and the number of GFAP-positive astrocytes in 5xFAD hippocampi. GFAP-positive astrocytes in hippocampi of the exercised 5xFAD mice displayed increases in the numbers of primary branches and in the soma area. In general, astrocytes distant from Aß plaques were smaller in size and possessed simplified processes in comparison to plaque-associated GFAP-positive astrocytes. Morphological alterations of GFAP-positive astrocytes occurred concomitantly with increased astrocytic brain-derived neurotrophic factor (BDNF) and restoration of postsynaptic protein PSD-95. CONCLUSIONS: Voluntary physical exercise modulates the reactive astrocyte state, which could be linked via astrocytic BDNF and PSD-95 to improved cognition in 5xFAD hippocampi. The molecular pathways involved in this modulation could potentially be targeted for benefit against AD.


Asunto(s)
Enfermedad de Alzheimer/terapia , Astrocitos/fisiología , Aprendizaje por Laberinto/fisiología , Condicionamiento Físico Animal/métodos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Prueba de Esfuerzo/métodos , Prueba de Esfuerzo/tendencias , Hipocampo/metabolismo , Hipocampo/patología , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Transgénicos , Condicionamiento Físico Animal/tendencias , Resultado del Tratamiento
11.
J Neurol ; 267(1): 76-86, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31559531

RESUMEN

In this study, our aim was to evaluate potential peripheral inflammatory changes in frontotemporal lobar degeneration (FTLD) patients carrying or not the C9orf72 repeat expansion. To this end, levels of several inflammatory markers (MCP-1, RANTES, IL-10, IL-17A, IL-12p, IFN-γ, IL-1ß, IL-8, and hs-CRP) and blood cells counts in plasma and/or serum of FTLD patients (N = 98) with or without the C9orf72 repeat expansion were analyzed. In addition, we evaluated whether the analyzed peripheral inflammatory markers correlated with disease progression or distinct clinical phenotypes under the heterogenous FTLD spectrum. Elevated levels of pro-inflammatory RANTES or MCP-1 and decreased levels of anti-inflammatory IL-10 were found to associate with Parkinsonism and a more rapid disease progression, indicated by longitudinal measurements of either MMSE or ADCS-ADL decline. These findings were observed in the total cohort in general, whereas the C9orf72 repeat expansion carriers showed only slight differences in IL-10 and hemoglobin levels compared to non-carriers. Furthermore, these C9orf72 repeat expansion-associated differences were observed mostly in male subjects. The females in general showed elevated levels of several pro-inflammatory markers compared to males regardless of the C9orf72 genotype. Our study suggests that pro-inflammatory changes observed in the early symptomatic phase of FTLD are associated with distinct clinical profiles and a more rapid disease progression, and that the C9orf72 repeat expansion and gender may also affect the inflammatory profile in FTLD.


Asunto(s)
Proteína C9orf72/genética , Progresión de la Enfermedad , Degeneración Lobar Frontotemporal/sangre , Degeneración Lobar Frontotemporal/fisiopatología , Inflamación/sangre , Anciano , Expansión de las Repeticiones de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales
12.
Glia ; 67(1): 146-159, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30453390

RESUMEN

Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARß/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aß) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aß-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARß/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Presenilina-1/metabolismo , Tiazoles/farmacología , Adulto , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Exones/efectos de los fármacos , Exones/fisiología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Oxidación-Reducción/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Distribución Aleatoria
13.
Neurotherapeutics ; 14(2): 519-532, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28050710

RESUMEN

Developing new therapies for stroke is urgently needed, as this disease is the leading cause of death and disability worldwide, and the existing treatment is only available for a small subset of patients. The interruption of blood flow to the brain during ischemic stroke launches multiple immune responses, characterized by infiltration of peripheral immune cells, the activation of brain microglial cells, and the accumulation of immune mediators. Copper is an essential trace element that is required for many critical processes in the brain. Copper homeostasis is disturbed in chronic neurodegenerative diseases and altered in stroke patients, and targeted copper delivery has been shown to be protective against chronic neurodegeneration. This study was undertaken to assess whether the copper bis(thiosemicarbazone) complex, CuII(atsm), is beneficial in acute brain injury, in preclinical mouse models of ischemic stroke. We demonstrate that the copper complex CuII(atsm) protects neurons from excitotoxicity and N2a cells from OGD in vitro, and is protective in permanent and transient ischemia models in mice as measured by functional outcome and lesion size. Copper delivery in the ischemic brains modulates the inflammatory response, specifically affecting the myeloid cells. It reduces CD45 and Iba1 immunoreactivity, and alters the morphology of Iba1 positive cells in the ischemic brain. CuII(atsm) also protects endogenous microglia against ischemic insult and reduces the proportion of invading monocytes. These results demonstrate that the copper complex CuII(atsm) is an inflammation-modulating compound with high therapeutic potential in stroke and is a strong candidate for the development of therapies for acute brain injury.


Asunto(s)
Isquemia Encefálica/metabolismo , Encefalitis/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Accidente Cerebrovascular/metabolismo , Tiosemicarbazonas/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/prevención & control , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación , Modelos Animales de Enfermedad , Encefalitis/prevención & control , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Accidente Cerebrovascular/prevención & control
14.
Sci Rep ; 6: 33176, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27624652

RESUMEN

Stroke is a highly debilitating, often fatal disorder for which current therapies are suitable for only a minor fraction of patients. Discovery of novel, effective therapies is hampered by the fact that advanced age, primary age-related tauopathy or comorbidities typical to several types of dementing diseases are usually not taken into account in preclinical studies, which predominantly use young, healthy rodents. Here we investigated for the first time the neuroprotective potential of bexarotene, an FDA-approved agent, in a co-morbidity model of stroke that combines high age and tauopathy with thromboembolic cerebral ischemia. Following thromboembolic stroke bexarotene enhanced autophagy in the ischemic brain concomitantly with a reduction in lesion volume and amelioration of behavioral deficits in aged transgenic mice expressing the human P301L-Tau mutation. In in vitro studies bexarotene increased the expression of autophagy markers and reduced autophagic flux in neuronal cells expressing P301L-Tau. Bexarotene also restored mitochondrial respiration deficits in P301L-Tau neurons. These newly described actions of bexarotene add to the growing amount of compelling data showing that bexarotene is a potent neuroprotective agent, and identify a novel autophagy-modulating effect of bexarotene.


Asunto(s)
Autofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/prevención & control , Tauopatías/tratamiento farmacológico , Tetrahidronaftalenos/farmacología , Tromboembolia/prevención & control , Envejecimiento , Animales , Bexaroteno , Ratones , Ratones Transgénicos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Tauopatías/metabolismo , Tauopatías/patología , Tromboembolia/metabolismo , Tromboembolia/patología
15.
Neurochem Int ; 97: 193-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27131734

RESUMEN

Exosomes, nano-sized extracellular vesicles secreted by most cell types, are found everywhere in the body. The role of exosomes in cellular functions has in the past years developed from being considered little more than cellular trashcans, to being proven important intercellular messengers and notable contributors to both health and in disease. A vast number of studies have revealed the multiple, and somewhat controversial role of exosomes in Alzheimer's disease, the most common neurodegenerative disease. Exosomes have been shown to spread toxic amyloid-beta and hyperphosphorylated tau between cells, and they have been suspected of inducing apoptosis and thereby contributing to neuronal loss. On the other hand, exosomes seem to possess the ability to reduce brain amyloid-beta through microglial uptake, and they are known to transfer neuroprotective substances between cells. These features, among many others, make exosomes extremely interesting from the point of view of developing novel therapeutic approaches. The fact that exosomes derived from the central nervous system can be found in bodily fluids also makes them an appealing target for biomarker development, which is not limited only to Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Exosomas/metabolismo , Enfermedad de Alzheimer/genética , Animales , Biomarcadores/metabolismo , Exosomas/genética , Humanos
16.
Brain Behav Immun ; 49: 322-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26111431

RESUMEN

Cerebral stroke induces massive Th1-shifted inflammation both in the brain and the periphery, contributing to the outcome of stroke. A Th1-type response is neurotoxic whereas a Th2-type response is accompanied by secretion of anti-inflammatory cytokines, such as interleukin-4 (IL-4). Interleukin-33 (IL-33) is a cytokine known to induce a shift towards the Th2-type immune response, polarize macrophages/microglia towards the M2-type, and induce production of anti-inflammatory cytokines. We found that the plasma levels of the inhibitory IL-33 receptor, sST2, are increased in human stroke and correlate with a worsened stroke outcome, suggesting an insufficient IL-33-driven Th2-type response. In mouse, peripheral administration of IL-33 reduced stroke-induced cell death and improved the sensitivity of the contralateral front paw at 5days post injury. The IL-33-treated mice had increased levels of IL-4 in the spleen and in the peri-ischemic area of the cortex. Neutralization of IL-4 by administration of an IL-4 antibody partially prevented the IL-33-mediated protection. IL-33 treatment also reduced astrocytic activation in the peri-ischemic area and increased the number of Arginase-1 immunopositive microglia/macrophages at the lesion site. In human T-cells, IL-33 treatment induced IL-4 secretion, and the conditioned media from IL-33-exposed T-cells reduced astrocytic activation. This study demonstrates that IL-33 is protective against ischemic insult by induction of IL-4 secretion and may represent a novel therapeutic approach for the treatment of stroke.


Asunto(s)
Isquemia Encefálica/inmunología , Isquemia Encefálica/prevención & control , Inflamación/prevención & control , Interleucina-33/sangre , Receptores de Somatostatina/sangre , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/prevención & control , Anciano , Animales , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/metabolismo , Isquemia Encefálica/sangre , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Interleucina-33/administración & dosificación , Interleucina-4/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Microglía/efectos de los fármacos , Microglía/inmunología , Actividad Motora/efectos de los fármacos , Proteínas Recombinantes/administración & dosificación , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo , Accidente Cerebrovascular/sangre , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...