Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(11): 13217-13228, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32091196

RESUMEN

Polarity-controlled growth of ZnO by chemical bath deposition provides a method for controlling the crystal orientation of vertical nanorod arrays. The ability to define the morphology and structure of the nanorods is essential to maximizing the performance of optical and electrical devices such as piezoelectric nanogenerators; however, well-defined Schottky contacts to the polar facets of the structures have yet to be explored. In this work, we demonstrate a process to fabricate metal-semiconductor-metal device structures from vertical arrays with Au contacts on the uppermost polar facets of the nanorods and show that the O-polar nanorods (∼0.44 eV) have a greater effective barrier height than the Zn-polar nanorods (∼0.37 eV). Oxygen plasma treatment is shown by cathodoluminescence spectroscopy to affect midgap defects associated with radiative emissions, which improves the Schottky contacts from weakly rectifying to strongly rectifying. Interestingly, the plasma treatment is shown to have a much greater effect in reducing the number of carriers in O-polar nanorods through quenching of the donor-type substitutional hydrogen on oxygen sites (HO) when compared to the zinc-vacancy-related hydrogen defect complexes (VZn-nH) in Zn-polar nanorods that evolve to lower-coordinated complexes. The effect on HO in the O-polar nanorods coincides with a large reduction in the visible-range defects, producing a lower conductivity and creating the larger effective barrier heights. This combination can allow radiative losses and charge leakage to be controlled, enhancing devices such as dynamic photodetectors, strain sensors, and light-emitting diodes while showing that the O-polar nanorods can outperform Zn-polar nanorods in such applications.

2.
Virulence ; 9(1): 1449-1467, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30112970

RESUMEN

Entomopathogenic fungi are potential biological control agents of mosquitoes. Our group observed that not all mosquitoes were equally susceptible to fungal infection and observed significant differences in virulence of different spore types. Conidiospores and blastospores were tested against Culex quinquefasciatus larvae. Blastospores are normally considered more virulent than conidia as they form germ tubes and penetrate the host integument more rapidly than conidia. However, when tested against Cx. quinquefasciatus, blastospores were less virulent than conidia. This host-fungus interaction was studied by optical, electron and atomic force microscopy (AFM). Furthermore, host immune responses and specific gene expression were investigated. Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores did not readily adhere to Culex larval integument and the main route of infection was through the gut. Adhesion forces between blastospores and Culex cuticle were significantly lower than for other insects. Larvae challenged with blastospores showed enhanced immune responses, with increased levels of phenoloxidase, glutathione-S-transferase, esterase, superoxide dismutase and lipid peroxidase activity. Interestingly, M. brunneum pathogenicity/stress-related genes were all down-regulated in blastospores exposed to Culex. Conversely, when conidia were exposed to Culex, the pathogenicity genes involved in adhesion or cuticle degradation were up-regulated. Delayed host mortality following blastospore infection of Culex was probably due to lower adhesion rates of blastospores to the cuticle and enhanced host immune responses deployed to counter infection. The results here show that subtle differences in host-pathogen interactions can be responsible for significant changes in virulence when comparing mosquito species, having important consequences for biological control strategies and the understanding of pathogenicity processes.


Asunto(s)
Culex/microbiología , Interacciones Huésped-Patógeno , Metarhizium/patogenicidad , Micosis/microbiología , Animales , Culex/inmunología , Esterasas/metabolismo , Integumento Común/microbiología , Larva/inmunología , Larva/microbiología , Metarhizium/genética , Monofenol Monooxigenasa/metabolismo , Micosis/inmunología , Control Biológico de Vectores , Esporas/patogenicidad , Esporas Fúngicas/patogenicidad , Superóxido Dismutasa/metabolismo , Virulencia/genética
3.
Nano Lett ; 17(11): 6626-6636, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29024594

RESUMEN

Manufacturable nanodevices must now be the predominant goal of nanotechnological research to ensure the enhanced properties of nanomaterials can be fully exploited and fulfill the promise that fundamental science has exposed. Here, we test the electrical stability of Au nanocatalyst-ZnO nanowire contacts to determine the limits of the electrical transport properties and the metal-semiconductor interfaces. While the transport properties of as-grown Au nanocatalyst contacts to ZnO nanowires have been well-defined, the stability of the interfaces over lengthy time periods and the electrical limits of the ohmic or Schottky function have not been studied. In this work, we use a recently developed iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the electrical, structural, and chemical properties when the nanowires are pushed to their electrical limits and show structural changes occur at the metal-nanowire interface or at the nanowire midshaft. The ohmic contacts exhibit enhanced quantum-mechanical edge-tunneling transport behavior because of additional native semiconductor material at the contact edge due to a strong metal-support interaction. The low-resistance nature of the ohmic contacts leads to catastrophic breakdown at the middle of the nanowire span where the maximum heating effect occurs. Schottky-type Au-nanowire contacts are observed when the nanowires are in the as-grown pristine state and display entirely different breakdown characteristics. The higher-resistance rectifying I-V behavior degrades as the current is increased which leads to a permanent weakening of the rectifying effect and atomic-scale structural changes at the edge of the Au interface where the tunneling current is concentrated. Furthermore, to study modified nanowires such as might be used in devices the nanoscale tunneling path at the interface edge of the ohmic nanowire contacts is removed with a simple etch treatment and the nanowires show similar I-V characteristics during breakdown as the Schottky pristine contacts. Breakdown is shown to occur either at the nanowire midshaft or at the Au contact depending on the initial conductivity of the Au contact interface. These results demonstrate the Au-nanowire structures are capable of withstanding long periods of electrical stress and are stable at high current densities ensuring they are ideal components for nanowire-device designs while providing the flexibility of choosing the electrical transport properties which other Au-nanowire systems cannot presently deliver.

4.
J Phys Condens Matter ; 29(38): 384001, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28678024

RESUMEN

Multi-probe instruments based on scanning tunnelling microscopy (STM) are becoming increasingly common for their ability to perform nano- to atomic-scale investigations of nanostructures, surfaces and in situ reactions. A common configuration is the four-probe STM often coupled with in situ scanning electron microscopy (SEM) that allows precise positioning of the probes onto surfaces and nanostructures enabling electrical and scanning experiments to be performed on highly localised regions of the sample. In this paper, we assess the sensitivity of four-probe STM for in-line resistivity measurements of the bulk ZnO surface. The measurements allow comparisons to established models that are used to relate light plasma treatments (O and H) of the surfaces to the resistivity measurements. The results are correlated to x-ray photoelectron spectroscopy (XPS) and show that four-probe STM can detect changes in surface and bulk conduction mechanisms that are beyond conventional monochromatic XPS.

5.
ACS Omega ; 2(6): 2507-2514, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457596

RESUMEN

The formation of materials with tunable wettability is important for applications ranging from antifouling to waterproofing surfaces. We report the use of various low-cost and nonhazardous hydrocarbon materials to tune the surface properties of aluminum oxide nanoparticles (NPs) from superhydrophilic to superhydrophobic through covalent functionalization. The hydrocarbon surfaces are compared with a fluorinated surface for wettability and surface energy properties. The role of NPs' hydrophobicity on their dynamic interfacial behavior at the oil-water interface and their ability to form stable emulsions is also explored. The spray-coated NPs provide textured surfaces (regardless of functionality), with water contact angles (θ) of 10-150° based on their surface functionality. The superhydrophobic NPs are able to reduce the interfacial tension of various oil-water interfaces by behaving as surfactants.

6.
Nano Lett ; 17(2): 687-694, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28001420

RESUMEN

Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.

7.
ACS Appl Mater Interfaces ; 8(1): 660-6, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26641156

RESUMEN

We present a new class of superhydrophobic surfaces created from low-cost and easily synthesized aluminum oxide nanoparticles functionalized carboxylic acids having highly branched hydrocarbon (HC) chains. These branched chains are new low surface energy materials (LSEMs) which can replace environmentally hazardous and expensive fluorocarbons (FCs). Regardless of coating method and curing temperature, the resulting textured surfaces develop water contact angles (θ) of ∼155° and root-mean-square roughnesses (Rq) ≈ 85 nm, being comparable with equivalent FC functionalized surfaces (θ = 157° and Rq = 100 nm). The functionalized nanoparticles may be coated onto a variety of substrates to generate different superhydrophobic materials.

8.
Nano Lett ; 15(7): 4248-54, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26042356

RESUMEN

The ability to control the properties of electrical contacts to nanostructures is essential to realize operational nanodevices. Here, we show that the electrical behavior of the nanocontacts between free-standing ZnO nanowires and the catalytic Au particle used for their growth can switch from Schottky to Ohmic depending on the size of the Au particles in relation to the cross-sectional width of the ZnO nanowires. We observe a distinct Schottky to Ohmic transition in transport behavior at an Au to nanowire diameter ratio of 0.6. The current-voltage electrical measurements performed with a multiprobe instrument are explained using 3-D self-consistent electrostatic and transport simulations revealing that tunneling at the contact edge is the dominant carrier transport mechanism for these nanoscale contacts. The results are applicable to other nanowire materials such as Si, GaAs, and InAs when the effects of surface charge and contact size are considered.

9.
Nanotechnology ; 25(42): 425706, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25277958

RESUMEN

We demonstrate here a method using a multi-probe UHV instrument to isolate and measure individual metal contacts controllably fabricated on the tips of free standing ZnO nanowires (NWs). The measurements show Au can form reliable Ohmic and rectifying contacts by exercising control over the surface properties. In the as-grown state the Au contacts display low-resistance characteristics which are determined by the adsorbed species and defects on the NW surface. Subjecting the NWs to an oxidising agent (H2O2) increases the surface potential barrier creating more rectifying contacts. These developments are crucial for controllable NW array devices.

10.
R Soc Open Sci ; 1(2): 140193, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26064542

RESUMEN

Adhesion of conidia of the insect pathogenic fungus, Metarhizium anisopliae, to the arthropod host cuticle initially involves hydrophobic forces followed by consolidation facilitated by the action of extracellular enzymes and secretion of mucilage. Gene expression analysis and atomic force microscopy were used to directly quantify recognition and adhesion between single conidia of M. anisopliae and the cuticle of the aquatic larval stage of Aedes aegypti and a representative terrestrial host, Tenebrio molitor. Gene expression data indicated recognition by the pathogen of both hosts; however, the forces for adhesion to the mosquito were approximately five times lower than those observed for Tenebrio. Although weak forces were recorded in response to Aedes, Metarhizium was unable to consolidate firm attachment. An analysis of the cuticular composition revealed an absence of long-chain hydrocarbons in Aedes larvae which are thought to be required for fungal development on host cuticle. This study provides, to our knowledge, the first evidence that Metarhizium does not form firm attachment to Ae. aegypti larvae in situ, therefore preventing the normal route of invasion and pathogenesis from occuring.

11.
Nanotechnology ; 24(43): 435706, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24107476

RESUMEN

Knowing and controlling the resistivity of an individual nanowire (NW) is crucial for the production of new sensors and devices. For ZnO NWs this is poorly understood; a 10(8) variation in resistivity has previously been reported, making the production of reproducible devices almost impossible. Here, we provide accurate resistivity measurements of individual NWs, using a four-probe scanning tunnelling microscope (STM), revealing a dependence on the NW dimensions. To correctly interpret this behaviour, an atomic level transmission electron microscopy technique was employed to study the structural properties of the NWs in relation to three growth techniques: hydrothermal, catalytic and non-catalytic vapour phase. All NWs were found to be defect free and structurally equivalent; those grown with a metallic catalyst were free from Au contamination. The resistivity measurements showed a distinct increase with decreasing NW diameter, independent of growth technique. The increasing resistivity at small NW diameters was attributed to the dominance of surface states removing electrons from the bulk. However, a fundamental variance in resistivity (10(2)) was observed and attributed to changes in occupied surface state density, an effect which is not seen with other NW materials such as Si. This is examined by a model to predict the effect of surface state occupancy on the measured resistivity and is confirmed with measurements after passivating the ZnO surface. Our results provide an understanding of the primary influence of the reactive nature of the surface and its dramatic effect on the electrical properties of ZnO NWs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...