RESUMEN
We study the dynamics of metallic vertical stripes in cuprates within the three-band Hubbard model based on a recently developed time-dependent Gutzwiller approximation. As doping increases, the optical conductivity shows transfer of spectral weight from the charge-transfer band towards (i) an incoherent band centered at 1.3 eV, (ii) a Drude peak, due mainly to motion along the stripe, and (iii) a low-energy collective mode which softens with doping and merges with (ii) at optimum doping in good agreement with experiment. The softening is related to the quasidegeneracy between Cu-centered and O-centered mean-field stripe solutions close to optimal doping.
RESUMEN
We perform a systematic slave-boson mean-field analysis of the three-band model for cuprates with first-principle parameters. Contrary to widespread belief based on earlier mean-field computations low doping stripes have a linear density close to 1/2 added hole per lattice constant. We find a dimensional crossover from 1D to 2D at doping approximately 0.1 followed by a breaking of particle-hole symmetry around doping 1/8 as doping increases. Our results explain in a simple way the behavior of the chemical potential, the magnetic incommensurability, and transport experiments as a function of doping. Bond centered and site-centered stripes become degenerate for small overdoping.