Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38617246

RESUMEN

Adverse childhood experiences (ACEs) are an established independent risk factor for chronic disease including obesity and hypertension; however, only women exposed to multiple ACEs show a positive relationship with BMI. Our lab has reported that maternal separation and early weaning (MSEW), a mouse model of early life stress, induces sex-specific mechanisms underlying greater blood pressure response to a chronic high fat diet (HF). Specifically, female MSEW mice fed a HF display exacerbated perigonadal white adipose tissue (pgWAT) expansion and a metabolic syndrome-like phenotype compared to control counterparts, whereas hypertension is caused by sympathoactivation in male MSEW mice. Thus, this study aimed to determine whether there is a sex-specific serine/threonine kinase (STKA) activity in pgWAT adipose tissue associated with early life stress. Frozen pgWAT was collected from MSEW and control, male and female mice fed a HF to assess STKA activity using the Pamstation12 instrument. Overall, MSEW induces significant reduction of 7 phosphokinases (|Z| >=1.5) in females (QIK, MLK, PKCH, MST, STE7, PEK, FRAY) and 5 in males (AKT, SGK, P38, MARK, CDK), while 15 were downregulated in both sexes (DMPK, PKA, PKG, RSK, PLK, DYRK, NMO, CAMK1, JNK, PAKA, RAD53, ERK, PAKB, PKD, PIM, AMPK). This data provides new insights into the sex-specific dysregulation of the molecular network controlling cellular phosphorylation signals in visceral adipose tissue and identifies possible target phosphokinases implicated in adipocyte hypertrophy as a result of exposure to early life stress. Identifying functional metabolic signatures is critical to elucidate the underlying molecular mechanisms behind the sex-specific obesity risk associated with early life stress.

2.
Am J Physiol Renal Physiol ; 326(4): F611-F621, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385173

RESUMEN

Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the ß-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.


Asunto(s)
Hipertensión , ATPasas de Translocación de Protón Vacuolares , Masculino , Humanos , Femenino , Ratones , Animales , Angiotensina II/farmacología , Receptor de Prorenina , Riñón/metabolismo , Sistema Renina-Angiotensina , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Renina/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260688

RESUMEN

Increased circulating levels of the soluble prorenin receptor (sPRR), a component of the renin angiotensin system (RAS), plays a role in obesity, glucose, and insulin homeostasis. However, elevated plasma sPRR in diabetic patients has been shown correlated with hyperglycemia in women but not men. Hence, the current study sought to understand the contribution of human sPRR (HsPRR) produced in the adipose tissue (Adi) on adipogenesis, and glucose and insulin balance in obesity settings. Adi-HsPRR mice were generated by breeding human sPRR-Myc-tag transgenic mice with mice expressing Adiponectin/Cre. The mouse model was validated by detecting 28kDa myc-tagged HsPRR by western blotting. Adipose HsPRR expression did not change circulating sPRR in female mice fed a standard chow diet or high fat diet (HFD) but increased plasma sPRR in male Adi-HsPRR mice fed a HFD compared to HFD-fed controls. Yet, Adi-HsPRR improved insulin sensitivity, vascular relaxation and the vasodilator agent Ang 1-7 in obese female mice but not in the male counterparts. Moreover, Adi-HsPRR expression reduced the expression of the adipogenic genes SREBP1C and CD36 only in gonadal white adipose from obese female mice, signifying that adipose tissue-derived HsPRR exerts a sex-specific effect on insulin sensitivity and endothelial function which seems independent of circulating sPRR.

4.
J Am Heart Assoc ; 13(1): e029511, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38156515

RESUMEN

BACKGROUND: We have previously reported that male mice exposed to maternal separation and early weaning (MSEW), a model of early life stress, show sympathetic activation and increased blood pressure in response to a chronic high-fat diet. The goal of this study was to investigate the contribution of the renin-angiotensin-aldosterone system to the mechanism by which MSEW increases blood pressure and vasomotor sympathetic tone in obese male mice. METHODS AND RESULTS: Mice were exposed to MSEW during postnatal life. Undisturbed litters served as controls. At weaning, both control and MSEW offspring were placed on a low-fat diet or a high-fat diet for 20 weeks. Angiotensin peptides in serum were similar in control and MSEW mice regardless of the diet. However, a high-fat diet induced a similar increase in angiotensinogen levels in serum, renal cortex, liver, and fat in both control and MSEW mice. No evidence of renin-angiotensin system activation was found in adipose tissue and renal cortex. After chronic treatment with enalapril (2.5 mg/kg per day, drinking water, 7 days), an angiotensin-converting enzyme inhibitor that does not cross the blood-brain barrier, induced a similar reduction in blood pressure in both groups, while the vasomotor sympathetic tone remained increased in obese MSEW mice. In addition, acute boluses of angiotensin II (1, 10, 50 µg/kg s.c.) exerted a similar pressor response in MSEW and control mice before and after enalapril treatment. CONCLUSIONS: Overall, elevated blood pressure and vasomotor sympathetic tone remained exacerbated in MSEW mice compared with controls after the peripheral inhibition of angiotensin-converting enzyme, suggesting a mechanism independent of angiotensin II.


Asunto(s)
Experiencias Adversas de la Infancia , Hipertensión , Masculino , Animales , Ratones , Angiotensina II , Privación Materna , Sistema Renina-Angiotensina/fisiología , Presión Sanguínea , Enalapril , Obesidad
5.
Physiol Rev ; 104(1): 473-532, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732829

RESUMEN

The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRß). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRß has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.


Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Masculino , Animales , Femenino , Humanos , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Caracteres Sexuales , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismo
6.
Hypertension ; 80(6): 1283-1296, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042247

RESUMEN

BACKGROUND: The opioid overdose and opioid use disorder epidemics are concomitant with increased metabolic and CVD risk. Although opioid use disorder causes adverse pregnancy outcomes, the offspring's cardiovascular health is understudied. We hypothesized that offspring exposed to in utero morphine exposure (IUME) would show increased CVD risk factors and endogenous opioid system dysregulation. METHODS: Sprague Dawley dams were treated with saline (vehicle, n=10) or escalating doses of morphine (5-20 mg/kg per day, SC, n=10) during gestation. Cardiovascular and metabolic parameters were assessed in adult offspring. RESULTS: Litter size and pups' birth weight were not different in response to IUME. Female and male IUME offspring showed reduced body length at birth (P<0.05) and body weight from weeks 1 to 3 of life (P<0.05), followed by a catch-up growth effect. By week 16, female and male IUME rats showed reduced tibia length (P<0.05) and fat mass. IUME increases the mean arterial pressure and the depressor response to mecamylamine (5 mg/kg per day, IP) induced by IUME were abolished by a chronic treatment with an alpha-adrenergic receptor blocker (prazosin; 1 mg/kg per day, IP). Although circulating levels of angiotensin peptides were similar between groups, IUME exacerbated maximal ex vivo Ang (angiotensin) II-induced vasoconstriction (P<0.05) and induced endothelial dysfunction in a sex-specific manner (P<0.05). Proenkephalin, an endogenous opioid peptide that lowers blood pressure and sympathetic-mediated vasoconstriction, showed reduced mRNA expression in the heart, aorta, and kidneys from morphine versus vehicle group (P<0.05). CONCLUSIONS: Among the effects of IUME, neurogenic hypertension, vascular dysfunction, and metabolic dysfunction could be associated with the dysregulation of the endogenous opioid system.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Trastornos Relacionados con Opioides , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratas , Animales , Masculino , Femenino , Morfina/efectos adversos , Analgésicos Opioides/efectos adversos , Ratas Sprague-Dawley , Enfermedades Cardiovasculares/complicaciones , Hipertensión/inducido químicamente , Angiotensina II/farmacología , Trastornos Relacionados con Opioides/complicaciones
7.
Hypertension ; 80(5): e75-e89, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951054

RESUMEN

There is increasing interest in the long-term cardiovascular health of women with complicated pregnancies and their affected offspring. Emerging antenatal risk factors such as preeclampsia appear to increase the risk of hypertension and cardiovascular disease across the life course in both the offspring and women after pregnancy. However, the antenatal programming mechanisms responsible are complex and incompletely understood, with roots in alterations in the development, structure, and function of the kidney, heart, vasculature, and brain. The renin-angiotensin-aldosterone system is a major regulator of maternal-fetal health through the placental interface, as well as kidney and cardiovascular tissue development and function. Renin-angiotensin-aldosterone system dysregulation plays a critical role in the development of pregnancy complications such as preeclampsia and programming of long-term adverse cardiovascular health in both the mother and the offspring. An improved understanding of antenatal renin-angiotensin-aldosterone system programming is crucial to identify at-risk individuals and to facilitate development of novel therapies to prevent and treat disease across the life course. Given the inherent complexities of the renin-angiotensin-aldosterone system, it is imperative that preclinical and translational research studies adhere to best practices to accurately and rigorously measure components of the renin-angiotensin-aldosterone system. This comprehensive synthesis of preclinical and translational scientific evidence of the mechanistic role of the renin-angiotensin-aldosterone system in antenatal programming of hypertension and cardiovascular disease will help (1) to ensure that future research uses best research practices, (2) to identify pressing needs, and (3) to guide future investigations to maximize potential outcomes. This will facilitate more rapid and efficient translation to clinical care and improve health outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Preeclampsia , Femenino , Embarazo , Humanos , Sistema Renina-Angiotensina/fisiología , Enfermedades Cardiovasculares/complicaciones , American Heart Association , Placenta , Madres , Renina , Aldosterona
8.
Diabetes ; 72(1): 19-32, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256836

RESUMEN

Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC), originally identified to be a lipid droplet-associated protein in adipocytes, positively associates with insulin sensitivity. Recently, we discovered that it is expressed abundantly in human endothelial cells and regulates vascular function. The current study was designed to characterize the physiological effects and molecular actions of endothelial CIDEC in the control of vascular phenotype and whole-body glucose homeostasis. To achieve this, we generated a humanized mouse model expressing endothelial-specific human CIDEC (E-CIDECtg). E-CIDECtg mice exhibited protection against high-fat diet-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, these mice displayed improved insulin signaling and endothelial nitric oxide synthase activation, enhanced endothelium-dependent vascular relaxation, and improved vascularization of adipose tissue, skeletal muscle, and heart. Mechanistically, we identified a novel interplay of CIDEC-vascular endothelial growth factor A (VEGFA)-vascular endothelial growth factor receptor 2 (VEGFR2) that reduced VEGFA and VEGFR2 degradation, thereby increasing VEGFR2 activation. Overall, our results demonstrate a protective role of endothelial CIDEC against obesity-induced metabolic and vascular dysfunction, in part, by modulation of VEGF signaling. These data suggest that CIDEC may be investigated as a potential future therapeutic target for mitigating obesity-related cardiometabolic disease.


Asunto(s)
Resistencia a la Insulina , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Células Endoteliales/metabolismo , Obesidad/metabolismo , Endotelio/metabolismo
9.
Biol Sex Differ ; 13(1): 29, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35706066

RESUMEN

BACKGROUND: Adverse childhood experiences (ACEs) are an independent risk factor for chronic diseases, including type 2 diabetes, stroke and ischemic heart disease. However, the effect of ACEs considering sex and race are not often reported in cohorts showing multiracial composition, with power to evaluate effects on underrepresented populations. AIM: To determine how sex and race affected the association of combined and individual ACEs with metabolic health biomarkers in the Southern Community Cohort Study (2012-2015). METHODS: Self-reported data were analyzed from ACE surveys performed during the second follow-up of a cohort comprised by over 60% of Black subjects and with an overall mean age of 60 years. RESULTS: BMI steadily increased with cumulative ACEs among Black and White women, but remained relatively stable in White men with ≥ 4 ACEs. Contrary, Black men showed an inverse association between ACE and BMI. Secondary analysis of metabolic outcomes showed that physical abuse was correlated with a 4.85 cm increase in waist circumference in Black subjects. Total cholesterol increased among individuals with more than 4 ACEs. In addition, increases in HbA1c were associated with emotional and maternal abuse in Black women and sexual abuse in White women. CONCLUSIONS: BMI is strongly associated with cumulative ACEs in women regardless the race, while waist circumference is strongly associated with ACEs in Black individuals, which combined with reduced BMI may indicate increased central adiposity in Black men. Our study suggests that sex and race influence the contribution of certain ACEs to impair metabolic health.


Asunto(s)
Experiencias Adversas de la Infancia , Diabetes Mellitus Tipo 2 , Biomarcadores , Índice de Masa Corporal , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Autoinforme
10.
Life Sci ; 304: 120718, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714704

RESUMEN

Previously, we have shown that Maternal Separation and Early Weaning (MSEW) exacerbates high fat diet (HF)-induced visceral obesity in female offspring compared to normally reared female mice. Stress hormones such as glucocorticoids and mineralocorticoids are critical mediators in the process of fat expansion, and both can activate the mineralocorticoid receptor (MR) in the adipocyte. Therefore, this study aimed to, comprehend the specific effects of MSEW on adipose tissue basic homeostatic function, and investigate whether female MSEW mice show an exacerbated obesogenic response mediated by MR. Gonadal white adipose tissue (gWAT), a type of visceral fat, was collected to assess lipidomics, transcriptomics, and in vitro lipolysis assay. Obese female MSEW mice showed increased adiposity, elevated 44:2/FA 18:2 + NH4 lipid class and reduced mitochondrial DNA density compared to obese control counterparts. In addition, single-cell RNA sequencing in isolated pre- and mature adipocytes showed a ~9-fold downregulation of aquaglycerolporin 3 (Aqp3), a channel responsible for glycerol efflux in adipocytes. Obese MSEW mice showed high levels of circulating aldosterone and gWAT-derived corticosterone compared to controls. Further, the MR blocker spironolactone (Spiro, 100 mg/kg/day, 2 weeks) normalized the elevated intracellular glycerol levels, the greater in vitro lipolysis response, and the number of large size adipocytes in MSEW mice compared to the controls. Our data suggests that MR plays a role promoting adipocyte hypertrophy in female MSEW mice by preventing lipolysis via glycerol release in favor of triglyceride formation and storage.


Asunto(s)
Obesidad , Receptores de Mineralocorticoides , Estrés Psicológico , Animales , Femenino , Ratones , Adipocitos , Glicerol/farmacología , Lipólisis , Privación Materna , Ratones Endogámicos C57BL , Ratones Obesos , Receptores de Mineralocorticoides/genética , Triglicéridos
13.
Front Physiol ; 11: 1046, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982785

RESUMEN

Environmental stress during early life is an important factor that affects the postnatal renal development. We have previously shown that male rats exposed to maternal separation (MatSep), a model of early life stress, are normotensive but display a sex-specific reduced renal function and exacerbated angiotensin II (AngII)-mediated vascular responses as adults. Since optimal AngII levels during postnatal life are required for normal maturation of the kidney, this study was designed to investigate both short- and long-term effect of MatSep on (1) the renal vascular architecture and function, (2) the intrarenal renin-angiotensin system (RAS) components status, and (3) the genome-wide expression of genes in isolated renal vasculature. Renal tissue and plasma were collected from male rats at different postnatal days (P) for intrarenal RAS components mRNA and protein expression measurements at P2, 6, 10, 14, 21, and 90 and microCT analysis at P21 and 90. Although with similar body weight and renal mass trajectories from P2 to P90, MatSep rats displayed decreased renal filtration capacity at P90, while increased microvascular density at both P21 and P90 (p < 0.05). MatSep increased renal expression of renin, and angiotensin type 1 (AT1) and type 2 (AT2) receptors (p < 0.05), but reduced ACE2 mRNA expression and activity from P2-14 compared to controls. However, intrarenal levels of AngII peptide were reduced (p < 0.05) possible due to the increased degradation to AngIII by aminopeptidase A. In isolated renal vasculature from neonates, Enriched Biological Pathways functional clusters (EBPfc) from genes changed by MatSep reported to modulate extracellular structure organization, inflammation, and pro-angiogenic transcription factors. Our data suggest that male neonates exposed to MatSep could display permanent changes in the renal microvascular architecture in response to intrarenal RAS imbalance in the context of the atypical upregulation of angiogenic factors.

14.
Am J Physiol Endocrinol Metab ; 319(5): E852-E862, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830551

RESUMEN

Early life stress (ELS) is an independent risk factor for increased BMI and cardiometabolic disease risk later in life. We have previously shown that a mouse model of ELS, maternal separation and early weaning (MSEW), exacerbates high-fat diet (HF)-induced obesity only in adult female mice. Therefore, the aim of this study was to investigate 1) whether the short- and long-term effects of HF on leptin expression are influenced by MSEW in a sex-specific manner and 2) the potential epigenetic mechanisms underlying the MSEW-induced changes in leptin expression. After 1 wk of HF, both MSEW male and female mice displayed increased fat mass compared with controls (P < 0.05). However, only MSEW female mice showed elevated leptin mRNA expression in gonadal white adipose tissue (gWAT; P < 0.05). After 12 wk of HF, fat mass remained increased only in female mice (P < 0.05). Moreover, plasma leptin and both leptin mRNA and protein expression in gWAT were augmented in MSEW female mice compered to controls (P < 0.05), but not in MSEW male mice. This association was not present in subcutaneous WAT. Furthermore, among 16 CpG sites in the leptin promoter, we identified three hypomethylated sites in tissue from HF-fed MSEW female mice compared with controls (3, 15, and 16, P < 0.05). These hypomethylated sites showed greater binding of key adipogenic factors such as PPARγ (P < 0.05). Taken together, our study reveals that MSEW superimposed to HF increases leptin protein expression in a sex- and fat depot-specific fashion. Our data suggest that the mechanism by which MSEW increases leptin expression could be epigenetic.


Asunto(s)
Tejido Adiposo/metabolismo , Leptina/metabolismo , Privación Materna , Obesidad/metabolismo , Estrés Psicológico/metabolismo , Regulación hacia Arriba , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Leptina/genética , Ratones , Obesidad/genética , Estrés Psicológico/genética
15.
J Appl Physiol (1985) ; 129(1): 58-65, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407243

RESUMEN

The renin-angiotensin system (RAS) precursor angiotensinogen (AGT) has been implicated in the functional and mechanical alterations of the vascular wall in response to high-fat diet (HFD). Previously, we showed that HFD exacerbates angiotensin II-induced constriction in isolated aortic rings from male rats exposed to maternal separation (MatSep), a model of early-life stress. Thus, the aim of this study was to investigate whether MatSep increases AGT secretion promoting vascular stiffness in rats fed a HFD. Male Wistar-Kyoto MatSep offspring were separated (3 h/day, postnatal days 2-14), and undisturbed littermates were used as controls. At weaning, rats were fed for 17 wk a normal diet (ND) or a HFD, 18% or 60% kcal from fat, respectively. In plasma, there was a main effect of MatSep reducing AGT concentration (P < 0.05) but no effect due to diet. In urine, ND-fed MatSep rats displayed higher AGT concentrations that were further increased by HFD (P < 0.05 vs. control). AGT mRNA abundance and protein expression were increased in adipose tissue from HFD-fed MatSep rats compared with control rats (P < 0.05). No significant differences in liver and kidney AGT levels were found between groups. In addition, MatSep augmented vascular stiffness assessed on freshly isolated aortic rings from ND-fed rats (P < 0.05), yet HFD did not worsen vascular stiffness in either MatSep or control rats. There was no correlation between plasma AGT and vascular stiffness in ND-fed rats; however, this relationship was negative in HFD-fed MatSep rats only (P < 0.05). Therefore, this study shows that MatSep-induced increases in vascular stiffness are independent of diet or plasma AGT.NEW & NOTEWORTHY This study demonstrates that there was no correlation between circulating levels of angiotensinogen (AGT) and the development of vascular stiffness in rats exposed to early-life stress and fed a normal diet. This study also shows that early-life stress-induced hypersensitive vascular contractility to angiotensin II in rats fed a high-fat diet is independent of circulating levels of AGT and occurs without further progression of vascular stiffness. Our data show that early-life stress primes the adipose tissue to secrete AGT in a sex- and species-independent fashion.


Asunto(s)
Angiotensinógeno , Rigidez Vascular , Angiotensina II , Animales , Dieta Alta en Grasa , Masculino , Privación Materna , Ratas , Ratas Endogámicas WKY
16.
Kidney Int ; 97(1): 143-155, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31739987

RESUMEN

In the setting of type-2 diabetes, there are declines of structural stability and functionality of blood capillaries and red blood cells (RBCs), increasing the risk for microcirculatory disturbances. Correcting hyperglycemia is not entirely effective at reestablishing normal cellular metabolism and function. Therefore, identification of pathological changes occurring before the development of overt hyperglycemia may lead to novel therapeutic targets for reducing the risk of microvascular dysfunction. Here we determine whether RBC-capillary interactions are altered by prediabetic hypersecretion of amylin, an amyloid forming hormone co-synthesized with insulin, and is reversed by endothelial cell-secreted epoxyeicosatrienoic acids. In patients, we found amylin deposition in RBCs in association with type-2 diabetes, heart failure, cancer and stroke. Amylin-coated RBCs have altered shape and reduced functional (non-glycated) hemoglobin. Amylin-coated RBCs administered intravenously in control rats upregulated erythropoietin and renal arginase expression and activity. We also found that diabetic rats expressing amyloid-forming human amylin in the pancreas (the HIP rat model) have increased tissue levels of hypoxia-inducible transcription factors, compared to diabetic rats that express non-amyloid forming rat amylin (the UCD rat model). Upregulation of erythropoietin correlated with lower hematocrit in the HIP model indicating pathologic erythropoiesis. In the HIP model, pharmacological upregulation of endogenous epoxyeicosatrienoic acids protected the renal microvasculature against amylin deposition and also reduced renal accumulation of HIFs. Thus, prediabetes induces dysregulation of amylin homeostasis and promotes amylin deposition in RBCs and the microvasculature altering RBC-capillary interaction leading to activation of hypoxia signaling pathways and pathologic erythropoiesis. Hence, dysregulation of amylin homeostasis could be a therapeutic target for ameliorating diabetic vascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/patología , Eritrocitos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Microvasos/patología , Adulto , Amiloide/metabolismo , Animales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/genética , Angiopatías Diabéticas/sangre , Modelos Animales de Enfermedad , Eicosanoides/metabolismo , Eritropoyesis , Eritropoyetina/metabolismo , Femenino , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Microcirculación , Persona de Mediana Edad , Ratas , Estudios Retrospectivos
17.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R379-R389, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868518

RESUMEN

Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.


Asunto(s)
Tejido Adiposo/inervación , Presión Sanguínea , Sistema Cardiovascular/inervación , Hipertensión/fisiopatología , Obesidad/fisiopatología , Reflejo , Células Receptoras Sensoriales/metabolismo , Sistema Nervioso Simpático/fisiopatología , Humanos , Hipertensión/etiología , Hipertensión/metabolismo , Masculino , Obesidad/complicaciones , Obesidad/metabolismo , Pronóstico , Factores de Riesgo
18.
J Am Heart Assoc ; 8(23): e012309, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31752639

RESUMEN

Background We have previously reported that female mice exposed to maternal separation and early weaning (MSEW), a model of early life stress, show exacerbated diet-induced obesity associated with hypertension. The goal of this study was to test whether MSEW promotes angiotensin II-dependent hypertension via activation of the renin-angiotensin system in adipose tissue. Methods and Results MSEW was achieved by daily separations from the dam and weaning at postnatal day 17, while normally reared controls were weaned at postnatal day 21. Female controls and MSEW weanlings were placed on a low-fat diet (LF, 10% kcal from fat) or high-fat diet (HF, 60% kcal from fat) for 20 weeks. MSEW did not change mean arterial pressure in LF-fed mice but increased it in HF-fed mice compared with controls (P<0.05). In MSEW mice fed a HF, angiotensin II concentration in plasma and adipose tissue was elevated compared with controls (P<0.05). In addition, angiotensinogen concentration was increased solely in adipose tissue from MSEW mice (P<0.05), while angiotensin-converting enzyme protein expression and activity were similar between groups. Chronic enalapril treatment (2.5 mg/kg per day, drinking water, 7 days) reduced mean arterial pressure in both groups of mice fed a HF (P<0.05) and abolished the differences due to MSEW. Acute angiotensin II-induced increases in mean arterial pressure (10 µg/kg SC) were attenuated in untreated MSEW HF-fed mice compared to controls (P<0.05); however, this response was similar between groups in enalapril-treated mice. Conclusions The upregulation of angiotensinogen and angiotensin II in adipose tissue could be an important mechanism by which female MSEW mice fed a HF develop hypertension.


Asunto(s)
Angiotensina II/fisiología , Hipertensión/etiología , Privación Materna , Obesidad/complicaciones , Destete , Animales , Femenino , Ratones
19.
Am J Physiol Heart Circ Physiol ; 316(3): H506-H515, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30550352

RESUMEN

Deletion of the prorenin receptor (PRR) in adipose tissue elevates systolic blood pressure (SBP) and the circulating soluble form of PRR (sPRR) in male mice fed a high-fat (HF) diet. However, sex differences in the contribution of adipose-PRR and sPRR to the regulation of the renin-angiotensin system (RAS) in key organs for blood pressure control are undefined. Therefore, we assessed blood pressure and the systemic and intrarenal RAS status in adipose-PRR knockout (KO) female mice. Blockade of RAS with losartan blunted SBP elevation in HF diet-fed adipose-PRR KO mice. ANG II levels were significantly increased in the renal cortex of HF diet-fed adipose-PRR KO female mice, but not systemically. HF diet-fed adipose-PRR KO mice exhibited higher vasopressin levels, water retention, and lower urine output than wild-type (WT) mice. The results also showed that deletion of adipose-PRR increased circulating sPRR and total hepatic sPRR contents, suggesting the liver as a major source of elevated plasma sPRR in adipose-PRR KO mice. To mimic the elevation of circulating sPRR and define the direct contribution of systemic sPRR to the regulation of the RAS and vasopressin, C57BL/6 female mice fed a standard diet were infused with recombinant sPRR. sPRR infusion increased plasma renin levels, renal and hepatic angiotensinogen expression, and vasopressin. Together, these results demonstrate that the deletion of adipose-PRR induced an elevation of SBP likely mediated by an intrarenal ANG II-dependent mechanism and that sPRR participates in RAS regulation and body fluid homeostasis via its capacity to activate the RAS and increase vasopressin levels. NEW & NOTEWORTHY The elevation of systolic blood pressure appears to be primarily mediated by cortical ANG II in high-fat diet-fed adipose-prorenin receptor knockout female mice. In addition, our data support a role for soluble prorenin receptor in renin-angiotensin system activation and vasopressin regulation.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antihipertensivos/farmacología , Presión Sanguínea , Losartán/farmacología , Receptores de Superficie Celular/sangre , Sistema Renina-Angiotensina , Tejido Adiposo/metabolismo , Angiotensina II/sangre , Angiotensinógeno/genética , Angiotensinógeno/metabolismo , Animales , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Vasopresinas/farmacología , Receptor de Prorenina
20.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1085-R1095, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256681

RESUMEN

Clinical studies have shown that obesity negatively impacts large arteries' function. We reported that rats exposed to maternal separation (MatSep), a model of early life stress, display enhanced angiotensin II (ANG II)-induced vasoconstriction in aortic rings cleaned of perivascular adipose tissue (PVAT) under normal diet (ND) conditions. We hypothesized that exposure to MatSep promotes a greater loss of PVAT-mediated protective effects on vascular function and loss of blood pressure (BP) rhythm in rats fed a high-fat diet (HFD) when compared with controls. MatSep was performed in male Wistar-Kyoto rats from days 2 to 14 of life. Normally reared littermates served as controls. On ND, aortic rings from MatSep rats with PVAT removed showed increased ANG II-mediated vasoconstriction versus controls; however, rings from MatSep rats with intact PVAT displayed blunted constriction. This effect was exacerbated by an HFD in both groups; however, the anticontractile effect of PVAT was greater in MatSep rats. Acetylcholine-induced relaxation was similar in MatSep and control rats fed an ND, regardless of the presence of PVAT. HFD impaired aortic relaxation in rings without PVAT from MatSep rats, whereas the presence of PVAT improved relaxation in both groups. On an HFD, immunolocalization of vascular smooth muscle-derived ANG-(1-7) and PVAT-derived adiponectin abundances were increased in MatSep. In rats fed an HFD, 24-h BP and BP rhythms were similar between groups. In summary, MatSep enhanced the ability of PVAT to blunt the heightened ANG II-induced vasoconstriction and endothelial dysfunction in rats fed an HFD. This protective effect may be mediated via the upregulation of vasoprotective factors within the adipovascular axis.


Asunto(s)
Tejido Adiposo/fisiopatología , Dieta Alta en Grasa/efectos adversos , Privación Materna , Obesidad/fisiopatología , Angiotensina II/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Masculino , Óxido Nítrico/farmacología , Ratas , Vasoconstricción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...