Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542368

RESUMEN

The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 µmol/4 µL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 µmol/4 µL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.


Asunto(s)
Ácido Quinurénico , Fármacos Neuroprotectores , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Fármacos Neuroprotectores/química , Prueba de Campo Abierto
2.
Sci Rep ; 13(1): 11328, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443330

RESUMEN

We previously showed the anti-inflammatory effects of kynurenic acid (KYNA) and its brain-penetrable analog N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide (SZR104) both in vivo and in vitro. Here, we identified the cytomorphological effects of KYNA and SZR104 in secondary microglial cultures established from newborn rat forebrains. We quantitatively analyzed selected morphological aspects of microglia in control (unchallenged), lipopolysaccharide (LPS)-treated (challenged), KYNA- or SZR104-treated, and LPS + KYNA or LPS + SZR104-treated cultures. Multicolor immunofluorescence labeling followed by morphometric analysis (area, perimeter, transformation index, lacunarity, density, span ratio, maximum span across the convex hull, hull circularity, hull area, hull perimeter, max/min radii, mean radius, diameter of bounding circle, fractal dimension, roughness, circularity) on binary (digital) silhouettes of the microglia revealed their morphological plasticity under experimental conditions. SZR104 and, to a lesser degree, KYNA inhibited proinflammatory phenotypic changes. For example, SZR104 treatment resulted in hypertrophied microglia characterized by a swollen cell body, enlarged perimeter, increased transformation index/decreased circularity, increased convex hull values (area, perimeter, mean radius, maximum span, diameter of the bounding circle and hull circularity), altered box-counting parameters (such as fractal dimension), and increased roughness/decreased density. Taken together, analysis of cytomorphological features could contribute to the characterization of the anti-inflammatory activity of SZR104 on cultured microglia.


Asunto(s)
Ácido Quinurénico , Microglía , Ratas , Animales , Ácido Quinurénico/farmacología , Células Cultivadas , Lipopolisacáridos/farmacología , Fenotipo , Antiinflamatorios/farmacología
3.
ACS Omega ; 8(20): 17966-17975, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251176

RESUMEN

The synthesis of kynurenic acid derivatives with potential biological effect was investigated and optimized for one-batch, two-step microwave-assisted reactions. Utilizing both chemically and biologically representative non-, methyl-, methoxy-, and chlorosubstituted aniline derivatives, in catalyst-free conditions, syntheses of seven kynurenic acid derivatives were achieved in a time frame of 2-3.5 h. In place of halogenated reaction media, tuneable green solvents were introduced for each analogue. The potential of green solvent mixtures to replace traditional solvents and to alter the regioisomeric ratio regarding the Conrad-Limpach method was highlighted. The advantages of the fast, eco-friendly, inexpensive analytic technique of TLC densitometry were emphasized for reaction monitoring and conversion determination in comparison to quantitative NMR. Moreover, the developed 2-3.5 h syntheses were scaled-up to achieve gram-scale products of KYNA derivatives, without altering the reaction time in the halogenated solvent DCB and more importantly in its green substitutes.

4.
Pharmaceutics ; 14(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36559217

RESUMEN

A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7-45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak appeared in the FTIR spectrum of the 10% w/v PVA-CHO/CHIT-SH hydrogel at 1647 cm-1, indicating the formation of a Schiff base (-CH=N-) and confirming the interaction between the NH2 groups of CHIT-SH and the CHO groups of PVA-CHO for the formation of the dynamic hydrogel. The reaction between the NH2 and CHO groups of the modified biopolymers resulted in a significant increase in the hydrogel's viscosity which was more than one thousand times greater (9800 mPa·s) than that of the used polymer solutions, which have a viscosity of only 4.6 and 5.8 mPa·s, respectively. Furthermore, the initial chitosan was modified with mercaptopropionic acid (thiol content = 201.85 ± 12 µmol/g) to increase the mucoadhesive properties of the hydrogel. The thiolated chitosan showed a significant increase (~600 mN/mm) in adhesion to the pig intestinal membrane compared to the initial one (~300 mN/mm). The in vitro release of tilorone from the hydrogel was controlled with the crosslinking density/concentration of the hydrogel; the 10% w/v PVA-CHO/CHIT-SH hydrogel had the slowest releasing (21.7 h-1/2) rate, while the 2% w/v PVA-CHO/CHIT-SH hydrogel had the fastest releasing rate (34.6 h-1/2). Due to the characteristics of these hydrogels, their future uses include tissue regeneration scaffolds, wound dressings for skin injuries, and injectable or in situ forming drug delivery systems. Eventually, we hope that the developed hydrogel will be useful in the local treatment of muscle atrophy, such as laryngotracheal atrophy.

5.
Int J Pharm ; 626: 122188, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36089213

RESUMEN

The therapeutic application of nasal powders requires the development of novel mucoadhesive excipients. Thiolated polymers exhibit significant potential for this purpose based on their increased mucoadhesion attributable to the formation of disulfide bonds between the polymer and mucus surface. A chitosan-cysteine (chit-cyst) conjugate was synthesized using 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in aqueous solution. The synthetic yield and synthesis conditions were optimized, and the efficiency of the reaction was evaluated. Rheological measurements revealed that the polymer derivative exhibited increased mucoadhesive properties in comparison to chitosan powder. To characterize the polymer, a novel purity investigation method was developed and verified to investigate the residual l-cysteine content. The results revealed that l-cysteine was not detectable in the resultant polymer matrix. Based on the cytotoxicity studies, chit-cyst was found to be safe for nasal application. Thereafter, nasal powder formulations were prepared using the polymer and the antiparkinsonian drug levodopa methyl ester hydrochloride by freeze-drying to investigate their nasal applicability. Based on the in vitro studies, these powders might be suitable for reducing the off periods of Parkinson's disease because of their expected higher in vivo mucoadhesion.


Asunto(s)
Quitosano , Quistes , Antiparkinsonianos , Cisteína/química , Disulfuros/química , Excipientes/química , Humanos , Polímeros/química , Polvos , Compuestos de Sulfhidrilo/química
6.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806158

RESUMEN

KYNAs, a compound with endogenous neuroprotective functions and an indole that is a building block of many biologically active compounds, such as a variety of neurotransmitters, are reacted in a transformation building upon Mannich bases. The reaction yields triarylmethane derivatives containing two biologically potent skeletons, and it may contribute to the synthesis of new, specialised neuroprotective compounds. The synthesis has been investigated via two procedures and the results were compared to those of previous studies. A possible alternative reaction route through acid catalysis has been established.


Asunto(s)
Indoles , Bases de Mannich , Catálisis , Bases de Mannich/química
7.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769362

RESUMEN

Kynurenic acid (KYNA) is an endogenous neuroprotective agent of increasing importance. Several derivatives have already been synthesized, bearing an abundance of functional groups attached to the main skeleton in different positions. Several of these compounds have already been tested in biological evaluations, with several of them targeting the same receptors and biological effects as KYNA. However, these modified compounds build upon the unmodified KYNA skeleton leaving a possible route for the synthesis of new, potentially neuroprotective derivatives with heteroatom-containing ring systems. The aim of this review is to summarize the syntheses of KYNA derivatives with altered skeletons and to pinpoint an appealing transformation for future medicinal lead molecules.


Asunto(s)
Hidroxiquinolinas/química , Ácido Quinurénico/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Humanos , Enfermedades Neurodegenerativas/patología
8.
Front Immunol ; 12: 717157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475875

RESUMEN

Background and Aims: The systemic host response in sepsis is frequently accompanied by central nervous system (CNS) dysfunction. Evidence suggests that excessive formation of neutrophil extracellular traps (NETs) can increase the permeability of the blood-brain barrier (BBB) and that the evolving mitochondrial damage may contribute to the pathogenesis of sepsis-associated encephalopathy. Kynurenic acid (KYNA), a metabolite of tryptophan catabolism, exerts pleiotropic cell-protective effects under pro-inflammatory conditions. Our aim was to investigate whether exogenous KYNA or its synthetic analogues SZR-72 and SZR-104 affect BBB permeability secondary to NET formation and influence cerebral mitochondrial disturbances in a clinically relevant rodent model of intraabdominal sepsis. Methods: Sprague-Dawley rats were subjected to fecal peritonitis (0.6 g kg-1 ip) or a sham operation. Septic animals were treated with saline or KYNA, SZR-72 or SZR-104 (160 µmol kg-1 each ip) 16h and 22h after induction. Invasive monitoring was performed on anesthetized animals to evaluate respiratory, cardiovascular, renal, hepatic and metabolic parameters to calculate rat organ failure assessment (ROFA) scores. NET components (citrullinated histone H3 (CitH3); myeloperoxidase (MPO)) and the NET inducer IL-1ß, as well as IL-6 and a brain injury marker (S100B) were detected from plasma samples. After 24h, leukocyte infiltration (tissue MPO) and mitochondrial complex I- and II-linked (CI-CII) oxidative phosphorylation (OXPHOS) were evaluated. In a separate series, Evans Blue extravasation and the edema index were used to assess BBB permeability in the same regions. Results: Sepsis was characterized by significantly elevated ROFA scores, while the increased BBB permeability and plasma S100B levels demonstrated brain damage. Plasma levels of CitH3, MPO and IL-1ß were elevated in sepsis but were ameliorated by KYNA and its synthetic analogues. The sepsis-induced deterioration in tissue CI-CII-linked OXPHOS and BBB parameters as well as the increase in tissue MPO content were positively affected by KYNA/KYNA analogues. Conclusion: This study is the first to report that KYNA and KYNA analogues are potential neuroprotective agents in experimental sepsis. The proposed mechanistic steps involve reduced peripheral NET formation, lowered BBB permeability changes and alleviation of mitochondrial dysfunction in the CNS.


Asunto(s)
Ácido Quinurénico/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Activación Neutrófila/efectos de los fármacos , Activación Neutrófila/inmunología , Sepsis/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/síntesis química , Masculino , Permeabilidad , Ratas , Sepsis/tratamiento farmacológico , Sepsis/etiología , Sepsis/patología
9.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525680

RESUMEN

Kynurenic acid (KYNA, 4-oxoquinoline-2-carboxylic acid), an intermediate of the tryptophan metabolism, has been recognized to exert different neuroactive actions; however, the need of how it or its aminoalkylated amide derivative N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-oxo-1,4-dihydroquinoline-2-carboxamide (KYNA-A4) exerts any effects on ion currents in excitable cells remains largely unmet. In this study, the investigations of how KYNA and other structurally similar KYNA derivatives have any adjustments on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were performed by patch-clamp technique. KYNA or KYNA-A4 increased the amplitude of M-type K+ current (IK(M)) and concomitantly enhanced the activation time course of the current. The EC50 value required for KYNA- or KYNA-A4 -stimulated IK(M) was yielded to be 18.1 or 6.4 µM, respectively. The presence of KYNA or KYNA-A4 shifted the relationship of normalized IK(M)-conductance versus membrane potential to more depolarized potential with no change in the gating charge of the current. The voltage-dependent hysteretic area of IK(M) elicited by long-lasting triangular ramp pulse was observed in GH3 cells and that was increased during exposure to KYNA or KYNA-A4. In cell-attached current recordings, addition of KYNA raised the open probability of M-type K+ channels, along with increased mean open time of the channel. Cell exposure to KYNA or KYNA-A4 mildly inhibited delayed-rectifying K+ current; however, neither erg-mediated K+ current, hyperpolarization-activated cation current, nor voltage-gated Na+ current in GH3 cells was changed by KYNA or KYNA-A4. Under whole-cell, current-clamp recordings, exposure to KYNA or KYNA-A4 diminished the frequency of spontaneous action potentials; moreover, their reduction in firing frequency was attenuated by linopirdine, yet not by iberiotoxin or apamin. In hippocampal mHippoE-14 neurons, the addition of KYNA also increased the IK(M) amplitude effectively. Taken together, the actions presented herein would be one of the noticeable mechanisms through which they modulate functional activities of excitable cells occurring in vivo.


Asunto(s)
Hipocampo/fisiología , Canales de Potasio KCNQ/efectos de los fármacos , Ácido Quinurénico/farmacología , Animales , Apamina/farmacología , Línea Celular , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Indoles/farmacología , Ácido Quinurénico/química , Potenciales de la Membrana/efectos de los fármacos , Ratones , Técnicas de Placa-Clamp , Péptidos/farmacología , Piridinas/farmacología , Ratas
10.
Pharmaceutics ; 13(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466551

RESUMEN

By being an antagonist of glutamate and other receptors, kynurenic acid serves as an endogenous neuroprotectant in several pathologies of the brain. Unfortunately, systemic administration of kynurenic acid is hindered by its low permeability through the blood-brain barrier. One possibility to overcome this problem is to use analogues with similar biological activity as kynurenic acid, but with an increased permeability through the blood-brain barrier. We synthesized six novel aminoalkylated amide derivatives of kynurenic acid, among which SZR-104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide) proved to have the highest permeability through an in vitro blood-brain barrier model. In addition, permeability of SZR-104 was significantly higher than that of kynurenic acid, xanthurenic acid and 39B, a quinolone derivative/xanthurenic acid analogue. Since peripherally administered SZR-104 is able to inhibit epileptiform activity in the brain, we conclude that SZR-104 is a promising kynurenic acid analogue with good penetrability into the central nervous system.

11.
Molecules ; 25(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093108

RESUMEN

The application of kynurenic acid (KYNA) as an electron-rich aromatic system in the modified Mannich reaction has been examined. The extension possibility of the reaction was tested by using amines occurring in a number of bioactive products, such as morpholine, piperidine, or N-methylpiperazine and aldehydes of markedly different reactivities, like formaldehyde and benzaldehyde. The influence of substituents attached to position 3 on the aminoalkylation was also investigated. Thus, reactions of 3-carbamoyl-substituted precursors with tertiary amine containing side-chains were also tested to afford new KYNA derivatives with two potential cationic centers. By means of NMR spectroscopic measurements, supported by DFT calculations, the dominant tautomer form of KYNA derivatives was also determined.


Asunto(s)
Ácido Quinurénico/análogos & derivados , Ácido Quinurénico/química , Ácido Quinurénico/síntesis química
12.
RSC Adv ; 11(1): 543-554, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35423050

RESUMEN

The syntheses of hydroxy-substituted kynurenic acid (KYNA) derivatives have been achieved by an optimised Conrad-Limpach procedure. The derivatives were then reacted with morpholine and paraformaldehyde, as a representative amine and aldehyde, in a modified Mannich reaction. The newly introduced substituents altered the preferred reaction centre of the KYNA skeleton. A systematic investigation of substitutions was carried out, using different reaction conditions, resulting in mono- or disubstituted derivatives. Product selectivity and regioselectivity were rationalised by DFT calculations disclosing HOMO distribution and NBO charges on the potential nucleophilic centres in the anion of the appropriate KYNA ester assumed to be active components towards the iminium ion intermediate.

13.
Molecules ; 24(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561643

RESUMEN

Kynurenic acid (KYNA), a metabolite of tryptophan, as an excitatory amino acid receptor antagonist is an effective neuroprotective agent in case of excitotoxicity, which is the hallmark of brain ischemia and several neurodegenerative processes. Therefore, kynurenine pathway, KYNA itself, and its derivatives came into the focus of research. During the past fifteen years, our research group has developed several neuroactive KYNA derivatives, some of which proved to be neuroprotective in preclinical studies. In this study, the synthesis of these KYNA derivatives and their evaluation with divergent molecular characteristics are presented together with their most typical effects on the monosynaptic transmission in CA1 region of the hippocampus of the rat. Their effects on the basic neuronal activity (on the field excitatory postsynaptic potentials: fEPSP) were studied in in vitro hippocampal slices in 1 and 200 µM concentrations. KYNA and its derivative 4 in both 1 and 200 µM concentrations proved to be inhibitory, while derivative 8 only in 200 µM decreased the amplitudes of fEPSPs. Derivative 5 facilitated the fEPSPs in 200 µM concentration. This is the first comparative study which evaluates the structural and functional differences of formerly and newly developed KYNA analogs. Considerations on possible relations between molecular structures and their physiological effects are presented.


Asunto(s)
Ácido Quinurénico/química , Ácido Quinurénico/farmacología , Diseño de Fármacos , Fenómenos Electrofisiológicos/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ácido Quinurénico/análogos & derivados , Estructura Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Relación Estructura-Actividad
14.
Front Immunol ; 10: 1406, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316502

RESUMEN

Purpose: The investigation of anti-inflammatory and immunosuppressive functions of Kynurenic acid (KYNA) is now in focus. There is also substantial evidence that TSG-6 has an anti-inflammatory activity. Therefore, in the present study, we compared the effects of newly synthetized KYNA analogs on the TNF-α production in U-937 monocytic cells in correlation with the effects on the TSG-6 expression. Methods: TNF-α production was measured by ELISA, the TSG-6 expression was determined by RTqPCR method. As cytokine inducers Staphylococcus aureus and Chlamydia pneumoniae were used. Results: KYNA and KYNA analogs attenuated TNF-α production and increased TSG-6 mRNA expression in U-937 cells stimulated by heat inactivated Staphylococcus aureus. In contrast, KYNA and some of the KYNA analogs increased the TNF-α production of C. pneumoniae infected U-937 cells; however, the newly synthetized analogs (SZR104, SZR 105, and SZR 109) exerted significant inhibitory effects on the TNF-α synthesis. The inhibitory and stimulatory effects correlated inversely with the TSG-6 expression. Conclusions: TSG-6 expression following activation with bacterial components could participate in the suppression of inflammatory cytokines, such as TNF-α, We suppose that the elevation of the TSG-6 expression by KYNA and especially by new KYNA analogs might be one of the mechanisms that are responsible for their suppressive effect on TNF-α production as a feedback mechanism. KYNA and KYNA analogs have an important role in influencing TSG-6 expression, and there is a possible benefit of targeting TSG-6 expression by kynurenines in inflammatory conditions following infections.


Asunto(s)
Moléculas de Adhesión Celular/genética , Chlamydophila pneumoniae/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Quinurénico/farmacología , Staphylococcus aureus/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología , Moléculas de Adhesión Celular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Ácido Quinurénico/análogos & derivados , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células U937 , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...