Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1258119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426095

RESUMEN

CD8+ T cells are a crucial part of the adaptive immune system, responsible for combating intracellular pathogens and tumor cells. The initial activation of T cells involves the formation of highly dynamic Ca2+ microdomains. Recently, purinergic signaling was shown to be involved in the formation of the initial Ca2+ microdomains in CD4+ T cells. In this study, the role of purinergic cation channels, particularly P2X4 and P2X7, in CD8+ T cell signaling from initial events to downstream responses was investigated, focusing on various aspects of T cell activation, including Ca2+ microdomains, global Ca2+ responses, NFAT-1 translocation, cytokine expression, and proliferation. While Ca2+ microdomain formation was significantly reduced in the first milliseconds to seconds in CD8+ T cells lacking P2X4 and P2X7 channels, global Ca2+ responses over minutes were comparable between wild-type (WT) and knockout cells. However, the onset velocity was reduced in P2X4-deficient cells, and P2X4, as well as P2X7-deficient cells, exhibited a delayed response to reach a certain level of free cytosolic Ca2+ concentration ([Ca2+]i). NFAT-1 translocation, a crucial transcription factor in T cell activation, was also impaired in CD8+ T cells lacking P2X4 and P2X7. In addition, the expression of IFN-γ, a major pro-inflammatory cytokine produced by activated CD8+ T cells, and Nur77, a negative regulator of T cell activation, was significantly reduced 18h post-stimulation in the knockout cells. In line, the proliferation of T cells after 3 days was also impaired in the absence of P2X4 and P2X7 channels. In summary, the study demonstrates that purinergic signaling through P2X4 and P2X7 enhances initial Ca2+ events during CD8+ T cell activation and plays a crucial role in regulating downstream responses, including NFAT-1 translocation, cytokine expression, and proliferation on multiple timescales. These findings suggest that targeting purinergic signaling pathways may offer potential therapeutic interventions.


Asunto(s)
Linfocitos T CD8-positivos , Transducción de Señal , Citocinas
2.
PLoS One ; 19(3): e0298542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457474

RESUMEN

Drug-based antiretroviral therapies (ART) efficiently suppress HIV replication in humans, but the virus persists as integrated proviral reservoirs in small numbers of cells. Importantly, ART cannot eliminate HIV from an infected individual, since it does not target the integrated provirus. Therefore, genome editing-based strategies that can inactivate or excise HIV genomes would provide the technology for novel curative therapies. In fact, the HIV-1 LTR-specific designer-recombinase Brec1 has been shown to remove integrated proviruses from infected cells and is highly efficacious on clinical HIV-1 isolates in vitro and in vivo, suggesting that Brec1 has the potential for clinical development of advanced HIV-1 eradication strategies in people living with HIV. In line with the preparation of a first-in-human advanced therapy medicinal product gene therapy trial, we here present an extensive preclinical evaluation of Brec1 and lentiviral vectors expressing the Brec1 transgene. This included detailed functional analysis of potential genomic off-target sites, assessing vector safety by investigating vector copy number (VCN) and the risk for potential vector-related insertional mutagenesis, as well as analyzing the potential of Brec1 to trigger an undesired strong T cell immune response. In conclusion, the antiviral designer-recombinase Brec1 is shown to lack any detectable cytopathic, genotoxic or T cell-related immunogenic effects, thereby meeting an important precondition for clinical application of the therapeutic lentiviral vector LV-Brec1 in novel HIV-1 curative strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Recombinasas/metabolismo , VIH-1/fisiología , Provirus/genética , Duplicado del Terminal Largo de VIH/genética , Infecciones por VIH/terapia , Vectores Genéticos/genética
3.
Front Immunol ; 14: 1182502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469513

RESUMEN

The transcription factor Interferon Regulatory Factor 4 (IRF4) is central in control of T cell activation and differentiation. Deficiency of IRF4 results in severe immune deficiency and affects maturation and function of most if not all T cell subsets. Here we use mouse infection models for Citrobacter rodentium and Strongyloides ratti to analyze the function of IRF4 in T helper (Th) 17 and Th2 cell responses, respectively. IRF4 deficient mice were impaired in the control of both pathogens, failed to mount Th17 and Th2 cell responses and showed impaired recruitment of T helper cells to the intestine, the infection site of both pathogens. Compromised intestinal migration was associated with reduced expression of the intestinal homing receptors α4ß7 integrin, CCR9 and GPR15. Identification of IRF4 binding sites in the gene loci of these receptors suggests a direct control of their expression by IRF4. Competitive T cell transfer assays further demonstrated that loss of one functional Irf4 allele already affected intestinal accumulation and Th2 and Th17 cell generation, indicating that lower IRF4 levels are of disadvantage for Th2 and Th17 cell differentiation as well as their migration to the intestine. Conversion of peripheral CD4+ T cells from an Irf4 wildtype to an Irf4 heterozygous or from an Irf4 heterozygous to a homozygous mutant genotype after C. rodentium or S. ratti infection did not reduce their capacity to produce Th17 or Th2 cytokines and only partially affected their persistence in the intestine, revealing that IRF4 is not essential for maintenance of the Th2 and Th17 phenotype and for survival of these T helper cells in the intestine. In conclusion, we demonstrate that the expression levels of IRF4 determine Th2 and Th17 cell differentiation and their intestinal accumulation but that IRF4 expression is not crucial for Th2 and Th17 cell survival.


Asunto(s)
Linfocitos T CD4-Positivos , Movimiento Celular , Factores Reguladores del Interferón , Intestinos , Animales , Ratones , Regulación de la Expresión Génica , Factores Reguladores del Interferón/metabolismo , Células Th17 , Células Th2 , Linfocitos T CD4-Positivos/citología
4.
J Immunol ; 210(11): 1717-1727, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058116

RESUMEN

IL-6 plays a fundamental role in T cell differentiation and is strictly controlled by surface expression and shedding of IL-6R. IL-6 also acts on other cells that might affect T cell maturation. To study the impact of cell-autonomous and uncontrolled IL-6 signaling in T cells, we generated mice with a constitutively active IL-6R gp130 chain (Lgp130) expressed either in all T cells (Lgp130 × CD4Cre mice) or inducible in CD4+ T cells (Lgp130 × CD4CreERT2 mice). Lgp130 × CD4Cre mice accumulated activated T cells, including TH17 cells, in the lung, resulting in severe inflammation. Tamoxifen treatment of Lgp130 × CD4CreERT2 mice caused Lgp130 expression in 40-50% of CD4+ T cells, but mice developed lung disease only after several months. Lgp130+ CD4+ T cells were also enriched for TH17 cells; however, there was concomitant expansion of Lgp130- regulatory T cells, which likely restricted pathologic Lgp130+ T cells. In vitro, constitutive gp130 signaling in T cells enhanced but was not sufficient for TH17 cell differentiation. Augmented TH17 cell development of Lgp130+ T cells was also observed in Lgp130 × CD4CreERT2 mice infected with Staphylococcus aureus, but gp130 activation did not interfere with formation of TH1 cells against Listeria monocytogenes. Lgp130+ CD4+ T cells acquired a memory T cell phenotype and persisted in high numbers as a polyclonal T cell population in lymphoid and peripheral tissues, but we did not observe T cell lymphoma formation. In conclusion, cell-autonomous gp130 signaling alters T cell differentiation. Although gp130 signaling is not sufficient for TH17 cell differentiation, it still promotes accumulation of activated T cells in the lung that cause tissue inflammation.


Asunto(s)
Neumonía , Células Th17 , Animales , Ratones , Diferenciación Celular , Receptor gp130 de Citocinas/metabolismo , Inflamación , Interleucina-6/metabolismo , Pulmón/metabolismo , Células TH1/metabolismo , Células Th17/metabolismo
5.
PNAS Nexus ; 2(3): pgac302, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36992817

RESUMEN

The chromosome axis plays a crucial role in meiotic recombination. Here, we study the function of ASY1, the Arabidopsis homolog of the yeast chromosome axis-associated component Hop1. Specifically, we characterized cross-over (CO) distribution in female and male meiosis by deep sequencing of the progeny of an allelic series of asy1 mutants. Combining data from nearly 1,000 individual plants, we find that reduced ASY1 functionality leads to genomic instability and sometimes drastic genomic rearrangements. We further observed that COs are less frequent and appear in more distal chromosomal regions in plants with no or reduced ASY1 functionality, consistent with previous analyses. However, our sequencing approach revealed that the reduction in CO number is not as dramatic as suggested by cytological analyses. Analysis of double mutants of asy1 with mutants with three other CO factors, MUS81, MSH4, and MSH5, as well as the determination of foci number of the CO regulator MLH1 demonstrates that the majority of the COs in asy1, similar to the situation in the wildtype (WT), largely belong to the class I, which are subject to interference. However, these COs are redistributed in asy1 mutants and typically appear much closer than in the WT. Hence, ASY1 plays a key role in CO interference that spaces COs along a chromosome. Conversely, since a large proportion of chromosomes do not receive any CO, we conclude that CO assurance, the process that ensures the obligatory assignment of one CO per chromosome, is also affected in asy1 mutants.

6.
Proc Natl Acad Sci U S A ; 120(1): e2210490120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574651

RESUMEN

γδ T cells are involved in the control of Staphylococcus aureus infection, but their importance in protection compared to other T cells is unclear. We used a mouse model of systemic S. aureus infection associated with high bacterial load and persistence in the kidney. Infection caused fulminant accumulation of γδ T cells in the kidney. Renal γδ T cells acquired tissue residency and were maintained in high numbers during chronic infection. At day 7, up to 50% of renal γδ T cells produced IL-17A in situ and a large fraction of renal γδ T cells remained IL-17A+ during chronic infection. Controlled depletion revealed that γδ T cells restricted renal S. aureus replication in the acute infection and provided protection during chronic renal infection and upon reinfection. Our results demonstrate that kidney-resident γδ T cells are nonredundant in limiting local S. aureus growth during chronic infection and provide enhanced protection against reinfection.


Asunto(s)
Interleucina-17 , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus , Receptores de Antígenos de Linfocitos T gamma-delta , Infección Persistente , Reinfección , Riñón , Ratones Endogámicos C57BL
7.
Cells ; 11(16)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-36010615

RESUMEN

In the past, proinflammatory CD11b+Ly6Chi monocytes were predominantly considered as a uniform population. However, recent investigations suggests that this population is far more diverse than previously thought. For example, in mouse models of Entamoeba (E.) histolytica and Listeria (L.) monocytogenes liver infections, it was shown that their absence had opposite effects. In the former model, it ameliorated parasite-dependent liver injury, whereas in the listeria model it exacerbated liver pathology. Here, we analyzed Ly6Chi monocytes from the liver of both infection models at transcriptome, protein, and functional levels. Paralleled by E. histolytica- and L. monocytogenes-specific differences in recruitment-relevant chemokines, both infections induced accumulation of Ly6C+ monocytes at infection sites. Transcriptomic analysis revealed a high similarity between monocytes from naïve and parasite-infected mice and a clear proinflammatory phenotype of listeria-induced monocytes. This was further reflected by the upregulation of M2-related transcription factors (e.g., Mafb, Nr4a1, Fos) and higher CD14 expression by Ly6Chi monocytes in the E. histolytica infection model. In contrast, monocytes from the listeria infection model expressed M1-related transcription factors (e.g., Irf2, Mndal, Ifi204) and showed higher expression of CD38, CD74, and CD86, as well as higher ROS production. Taken together, proinflammatory Ly6Chi monocytes vary considerably depending on the causative pathogen. By using markers identified in the study, Ly6Chi monocytes can be further subdivided into different populations.


Asunto(s)
Monocitos , Parásitos , Animales , Antígenos Ly/metabolismo , Hígado/metabolismo , Ratones , Monocitos/metabolismo , Parásitos/metabolismo , Factores de Transcripción/metabolismo
8.
Sci Adv ; 8(5): eabl9770, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119925

RESUMEN

Initial T cell activation is triggered by the formation of highly dynamic, spatiotemporally restricted Ca2+ microdomains. Purinergic signaling is known to be involved in Ca2+ influx in T cells at later stages compared to the initial microdomain formation. Using a high-resolution Ca2+ live-cell imaging system, we show that the two purinergic cation channels P2X4 and P2X7 not only are involved in the global Ca2+ signals but also promote initial Ca2+ microdomains tens of milliseconds after T cell stimulation. These Ca2+ microdomains were significantly decreased in T cells from P2rx4-/- and P2rx7-/- mice or by pharmacological inhibition or blocking. Furthermore, we show a pannexin-1-dependent activation of P2X4 in the absence of T cell receptor/CD3 stimulation. Subsequently, upon T cell receptor/CD3 stimulation, ATP release is increased and autocrine activation of both P2X4 and P2X7 then amplifies initial Ca2+ microdomains already in the first second of T cell activation.

9.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831261

RESUMEN

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing agent and its inhibition proved to inhibit T-cell activation. However, the impact of the NAADP signaling on CD4+ T-cell differentiation and plasticity and on the inflammation in tissues other than the central nervous system remains unclear. In this study, we used an antagonist of NAADP signaling, trans-Ned 19, to study the role of NAADP in CD4+ T-cell differentiation and effector function. Partial blockade of NAADP signaling in naïve CD4+ T cells in vitro promoted the differentiation of Th17 cells. Interestingly, trans-Ned 19 also promoted the production of IL-10, co-expression of LAG-3 and CD49b and increased the suppressive capacity of Th17 cells. Moreover, using an IL-17A fate mapping mouse model, we showed that NAADP inhibition promotes conversion of Th17 cells into regulatory T cells in vitro and in vivo. In line with the results, we found that inhibiting NAADP ameliorates disease in a mouse model of intestinal inflammation. Thus, these results reveal a novel function of NAADP in controlling the differentiation and plasticity of CD4+ T cells.


Asunto(s)
Señalización del Calcio , Carbolinas/farmacología , Plasticidad de la Célula , NADP/análogos & derivados , Piperazinas/farmacología , Células Th17/citología , Células Th17/inmunología , Animales , Complejo CD3/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Inflamación/patología , Interleucina-10/metabolismo , Intestinos/patología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , NADP/antagonistas & inhibidores , NADP/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th17/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
10.
Front Immunol ; 12: 778916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095852

RESUMEN

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


Asunto(s)
Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Canales Catiónicos TRPM/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Señalización del Calcio/inmunología , Proliferación Celular/fisiología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología
11.
BMC Plant Biol ; 16(1): 165, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27444995

RESUMEN

BACKGROUND: Plants have evolved complex mechanisms to adapt growth and development to the light environment. The COP1/SPA complex is a key repressor of photomorphogenesis in dark-grown Arabidopsis plants and acts as an E3 ubiquitin ligase to ubiquitinate transcription factors involved in the light response. In the light, COP1/SPA activity is inhibited by photoreceptors, thereby allowing accumulation of these transcription factors and a subsequent light response. Previous results have shown that the four members of the SPA family exhibit partially divergent functions. In particular, SPA1 and SPA2 strongly differ in their responsiveness to light, while they have indistinguishable activities in darkness. The much higher light-responsiveness of SPA2 is partially explained by the much stronger light-induced degradation of SPA2 when compared to SPA1. Here, we have conducted SPA1/SPA2 domain swap experiments to identify the protein domain(s) responsible for the functional divergence between SPA1 and SPA2. RESULTS: We have individually swapped the three domains between SPA1 and SPA2 - the N-terminal kinase-like domain, the coiled-coil domain and the WD-repeat domain - and expressed them in spa mutant Arabidopsis plants. The phenotypes of transgenic seedlings show that the respective N-terminal kinase-like domain is primarily responsible for the respective light-responsiveness of SPA1 and SPA2. Furthermore, the most divergent part of the N-terminal domain was sufficient to confer a SPA1- or SPA2-like activity to the respective SPA protein. The stronger light-induced degradation of SPA2 when compared to SPA1 was also primarily conferred by the SPA2 N-terminal domain. At last, the different affinities of SPA1 and SPA2 for cryptochrome 2 are defined by the N-terminal domain of the respective SPA protein. In contrast, both SPA1 and SPA2 similarly interacted with COP1 in light-grown seedlings. CONCLUSIONS: Our results show that the distinct activities and protein stabilities of SPA1 and SPA2 in light-grown seedlings are primarily encoded by their N-terminal kinase-like domains. Similarly, the different affinities of SPA1 and SPA2 for cry2 are explained by their respective N-terminal domain. Hence, after a duplication event during evolution, the N-terminal domains of SPA1 and SPA2 underwent subfunctionalization, possibly to allow optimal adaptation of growth and development to a changing light environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Evolución Biológica , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación
12.
PLoS Genet ; 11(9): e1005516, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26368289

RESUMEN

The Arabidopsis COP1/SPA E3 ubiquitin ligase is a key negative regulator that represses light signaling in darkness by targeting transcription factors involved in the light response for degradation. The COP1/SPA complex consists of COP1 and members of the four-member SPA protein family (SPA1-SPA4). Genetic analysis indicated that COP1/SPA2 function is particularly strongly repressed by light when compared to complexes carrying the other three SPAs, thereby promoting a light response after exposure of plants to extremely low light. Here, we show that the SPA2 protein is degraded within 5-15 min after exposure of dark-grown seedlings to a pulse of light. Phytochrome photoreceptors are required for the rapid degradation of SPA2 in red, far-red and also in blue light, whereas cryptochromes are not involved in the rapid, blue light-induced reduction in SPA2 protein levels. These results uncover a photoreceptor-specific mechanism of light-induced inhibition of COP1/SPA2 function. Phytochrome A (phyA) is required for the severe blue light responsiveness of spa triple mutants expressing only SPA2, thus confirming the important role of phyA in downregulating SPA2 function in blue light. In blue light, SPA2 forms a complex with cryptochrome 1 (cry1), but not with cryptochrome 2 (cry2) in vivo, indicating that the lack of a rapid blue light response of the SPA2 protein is only in part caused by a failure to interact with cryptochromes. Since SPA1 interacts with both cry1 and cry2, these results provide first molecular evidence that the light-regulation of different SPA proteins diverged during evolution. SPA2 degradation in the light requires COP1 and the COP1-interacting coiled-coil domain of SPA2, supporting that SPA2 is ubiquitinated by COP1. We propose that light perceived by phytochromes causes a switch in the ubiquitination activity of COP1/SPA2 from ubiquitinating downstream substrates to ubiquitinating SPA2, which subsequently causes a repression of COP1/SPA2 function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Luz , Fotorreceptores de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogénesis , Mutación , Fitocromo/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...