Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 12: e119804, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371613

RESUMEN

Papers including articles that are produced because of the activities of LifeWatch ERIC, in the context of its second implementation period (2022 - 2026) and through the implementation of its new Strategic Working Plan, are published in this special collection. The articles include data papers, papers describing the development and functioning of analytical services and papers describing any other research outcome, produced either by LifeWatch ERIC or by any collaboration with any other ERIC, Research Infrastructure, global aggregator or other legal entity.

2.
Biol Rev Camb Philos Soc ; 93(1): 600-625, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28766908

RESUMEN

Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.


Asunto(s)
Distribución Animal/fisiología , Biodiversidad , Monitoreo del Ambiente/métodos , Animales , Modelos Biológicos
4.
PLoS Biol ; 13(7): e1002204, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26204382

RESUMEN

Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil's speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing ~7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2-4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish.


Asunto(s)
Biodiversidad , Bases de Datos como Asunto , Brasil , Bases de Datos como Asunto/economía
5.
Biodivers Data J ; (2): e4034, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25349527

RESUMEN

Fauna Europaea is Europe's main zoological taxonomic index, making the scientific names and distributions of all living, currently known, multicellular, European land and freshwater animals species integrally available in one authoritative database. Fauna Europaea covers about 260,000 taxon names, including 145,000 accepted (sub)species, assembled by a large network of (>400) leading specialists, using advanced electronic tools for data collations with data quality assured through sophisticated validation routines. Fauna Europaea started in 2000 as an EC funded FP5 project and provides a unique taxonomic reference for many user-groups such as scientists, governments, industries, nature conservation communities and educational programs. Fauna Europaea was formally accepted as an INSPIRE standard for Europe, as part of the European Taxonomic Backbone established in PESI. Fauna Europaea provides a public web portal at faunaeur.org with links to other key biodiversity services, is installed as a taxonomic backbone in wide range of biodiversity services and actively contributes to biodiversity informatics innovations in various initiatives and EC programs.

6.
BMC Ecol ; 13: 16, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23587026

RESUMEN

Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.


Asunto(s)
Biodiversidad , Biología Computacional/instrumentación , Biología Computacional/métodos , Animales , Ecosistema , Humanos , Difusión de la Información
7.
PLoS One ; 7(5): e36881, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22649502

RESUMEN

The number of described species on the planet is about 1.9 million, with ca. 17,000 new species described annually, mostly from the tropics. However, taxonomy is usually described as a science in crisis, lacking manpower and funding, a politically acknowledged problem known as the Taxonomic Impediment. Using data from the Fauna Europaea database and the Zoological Record, we show that contrary to general belief, developed and heavily-studied parts of the world are important reservoirs of unknown species. In Europe, new species of multicellular terrestrial and freshwater animals are being discovered and named at an unprecedented rate: since the 1950s, more than 770 new species are on average described each year from Europe, which add to the 125,000 terrestrial and freshwater multicellular species already known in this region. There is no sign of having reached a plateau that would allow for the assessment of the magnitude of European biodiversity. More remarkably, over 60% of these new species are described by non-professional taxonomists. Amateurs are recognized as an essential part of the workforce in ecology and astronomy, but the magnitude of non-professional taxonomist contributions to alpha-taxonomy has not been fully realized until now. Our results stress the importance of developing a system that better supports and guides this formidable workforce, as we seek to overcome the Taxonomic Impediment and speed up the process of describing the planetary biodiversity before it is too late.


Asunto(s)
Biodiversidad , Clasificación/métodos , Investigación , Animales , Europa (Continente) , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...