Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 6648, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459915

RESUMEN

Tools for three-dimensional elemental characterization are available on length scales ranging from individual atoms, using electrons as a probe, to micrometers with X-rays. However, for larger volumes up to millimeters or centimeters, quantitative measurements of elemental or isotope densities were hitherto only possible on the surface. Here, a novel quantitative elemental characterization method based on energy-resolved neutron imaging, utilizing the known neutron absorption cross sections with their 'finger-print' absorption resonance signatures, is demonstrated. Enabled by a pixilated time-of-flight neutron transmission detector installed at an intense short-pulsed spallation neutron source, for this demonstration 3.25 million state-of-the-art nuclear physics neutron transmission analyses were conducted to derive isotopic densities for five isotopes in 3D in a volume of 0.25 cm3. The tomographic reconstruction of the isotope densities provides elemental maps similar to X-ray microprobe maps for any cross section in the probed volume. The bulk isotopic density of a U-20Pu-10Zr-3Np-2Am nuclear transmutation fuel sample was measured, agrees well with mass-spectrometry and is evidence of the accuracy of the method.

2.
Sci Rep ; 11(1): 21360, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725403

RESUMEN

Imaging using scintillators is a widespread and cost-effective approach in radiography. While different types of scintillator and sensor configurations exist, it can be stated that the detection efficiency and resolution of a scintillator-based system strongly depend on the scintillator material and its thickness. Recently developed event-driven detectors are capable of registering spots of light emitted by the scintillator after a particle interaction, allowing to reconstruct the Center-of-Mass of the interaction within the scintillator. This results in a more precise location of the event and therefore provides a pathway to overcome the scintillator thickness limitation and increase the effective spatial resolution of the system. Utilizing this principle, we present a detector capable of Time-of-Flight imaging with an adjustable field-of-view, ad-hoc binning and re-binning of data based on the requirements of the experiment including the possibility of particle discrimination via the analysis of the event shape in space and time. It is considered that this novel concept might replace regular cameras in neutron imaging detectors as it provides superior detection capabilities with the most recent results providing an increase by a factor 3 in image resolution and an increase by up to a factor of 7.5 in signal-to-noise for thermal neutron imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...