Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proteins ; 91(7): 890-903, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36732896

RESUMEN

Specific proteins found in food sources tend to aggregate into fibrils under heat treatment; studying these aggregation processes and developing tools to control protein heat-induced aggregation is an active area of research. Phthalocyanine complexes are known to exhibit antiprionic and anti-fibrillogenic activity. Thus, the anti-fibrillogenic effect of a series of Zr phthalocyanines with different out-of-plane coordinated ligands, namely positively charged (PcZrLys2 ), negatively charged (PcZrCitr2 ), and group able to form disulfide bridges (PcZrS2 ), on the heat-induced aggregation of such proteins as BLG, insulin, and lysozyme was studied. The inhibition of reaction activity up to about 90% was observed in the presence of these compounds for all proteins. The effective concentration of the inhibitor was calculated for the compound with the highest activity (PcZrS2 ) to be 10.6 ± 3.6 and 7.3 ± 1.2 µM/L, respectively. Fluorescence spectroscopy studies demonstrated similar binding constants of three phthalocyanines binding with BLG globule. This is consistent with the results of molecular dynamics simulation, which imply the interaction of the globule with the tetrapyrrole macrocycle of phthalocyanine, leading to the globule stabilization. At the same time, TEM shows that in the presence of phthalocyanine PcZrS2 , thinner and longer fibrils were formed compared to control in all three proteins (BLG, insulin, and lysozyme). Thus, we can conclude that phthalocyanine PcZrS2 affects the amyloid aggregation's general mechanism, which is typical for proteins of different structures. Therefore, the phthalocyanine PcZrS2 is proposed as an anti-amyloidogenic agent suppressing heat-induced aggregation of proteins of different structures, making it potentially suitable for application in the food industry.


Asunto(s)
Agregado de Proteínas , Calor , Circonio/química , Circonio/farmacología , Insulina/metabolismo , Muramidasa/metabolismo
2.
PLoS One ; 16(1): e0243904, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411832

RESUMEN

Amyloid fibrils are widely studied both as target in conformational disorders and as basis for the development of protein-based functional materials. The three Zr phthalocyanines bearing dehydroacetic acid residue (PcZr(L1)2) and its condensed derivatives (PcZr(L2)2 and PcZr(L3)2) as out-of-plane ligands were synthesized and their influence on insulin fibril formation was studied by amyloid-sensitive fluorescent dye based assay, scanning electron microscopy, fluorescent and absorption spectroscopies. The presence of Zr phthalocyanines was shown to modify the fibril formation. The morphology of fibrils formed in the presence of the Zr phthalocyanines differs from that of free insulin and depends on the structure of out-of-plane ligands. It is shown that free insulin mostly forms fibril clusters with the length of about 0.3-2.1 µm. The presence of Zr phthalocyanines leads to the formation of individual 0.4-2.8 µm-long fibrils with a reduced tendency to lateral aggregation and cluster formation (PcZr(L1)2), shorter 0.2-1.5 µm-long fibrils with the tendency to lateral aggregation without clusters (PcZr(L2)2), and fibril-like 0.2-1.0 µm-long structures (PcZr(L3)2). The strongest influence on fibrils morphology made by PcZr(L3)2 could be explained by the additional stacking of phenyl moiety of the ligand with aromatic amino acids in protein. The evidences of binding of studied Zr phthalocyanines to mature fibrils were shown by absorption spectroscopy (for PcZr(L1)2 and PcZr(L2)2) and fluorescent spectroscopy (for PcZr(L3)2). These complexes could be potentially used as external tools allowing the development of functional materials on protein fibrils basis.


Asunto(s)
Amiloide/química , Indoles/química , Insulina/química , Compuestos Organometálicos/química , Pironas/química , Circonio/química , Humanos , Isoindoles , Estructura Molecular
3.
RSC Adv ; 11(14): 8163-8177, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35423299

RESUMEN

A fluorescein-tagged iron(ii) cage complex was obtained in a moderate total yield using a two-step synthetic procedure starting from its propargylamine-containing clathrochelate precursor. An 11-fold decrease in fluorescence quantum yield is observed in passing from the given fluorescein-based dye to its clathrochelate derivative. An excitation energy transfer from the terminal fluorescent group of the macrobicyclic molecule to its quasiaromatic highly π-conjugated clathrochelate framework can explain this effect. The kinetics of the hydrolysis of the acetyl groups of acetylated fluorescein azide and its clathrochelate derivative in the presence of one equivalent of BSA evidenced no strong supramolecular host-guest interactions between BSA and the tested compounds. Study of a chemical stability of the deacetylated iron(ii) clathrochelate suggested the formation of a supramolecular 1 : 1 BSA-clathrochelate assembly. Moreover, an addition of BSA or HSA to its solution caused the appearance of strong clathrochelate-based ICD outputs. The fluorescence emission anisotropy studies also evidenced the supramolecular binding of the fluorescein-tagged iron(ii) clathrochelate to the BSA macromolecule, leading to a high increase in this type of anisotropy. Subcellular uptake of the fluorescein-tagged molecules was visualized using fluorescence microscopy and showed its distribution to be mainly in the cytosol without entering the nucleus or accumulating in any other organelle. An X-rayed crystal of the above propargylamide macrobicyclic precursor with a reactive terminal C[triple bond, length as m-dash]C bond contains the clathrochelate molecules of two types, A and B. The encapsulated iron(ii) ion in these molecules is situated in the center of its FeN6-coordination polyhedron, the geometry of which is intermediate between a trigonal prism (TP) and a trigonal antiprism (TAP). The Fe-N distances vary from 1.8754(6) to 1.9286(4) Å and the heights h of their distorted TP-TAP polyhedra are very similar (2.30 and 2.31 Å); their values of φ are equal to 25.3 and 26.6°. In this crystal, the molecules of types A and B participate in different types of hydrogen bonding, giving H-bonded clathrochelate tetramers through their carboxylic and amide groups, respectively; these tetramers are connected to H-bonded chains.

4.
Biomolecules ; 10(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256144

RESUMEN

Recognition of elements of protein tertiary structure is crucial for biotechnological and biomedical tasks; this makes the development of optical sensors for certain protein surface elements important. Herein, we demonstrated the ability of iron(II) clathrochelates (1-3) functionalized with mono-, di- and hexa-carboxyalkylsulfide to induce selective circular dichroism (CD) response upon binding to globular proteins. Thus, inherently CD-silent clathrochelates revealed selective inducing of CD spectra when binding to human serum albumin (HSA) (1, 2), beta-lactoglobuline (2) and bovine serum albumin (BSA) (3). Hence, functionalization of iron(II) clathrochelates with the carboxyalkylsulfide group appears to be a promising tool for the design of CD-probes sensitive to certain surface elements of proteins tertiary structure. Additionally, interaction of 1-3 with proteins was also studied by isothermal titration calorimetry, protein fluorescence quenching, electrospray ionization mass spectrometry (ESI-MS) and computer simulations. Formation of both 1:1 and 1:2 assemblies of HSA with 1-3 was evidenced by ESI-MS. A protein fluorescence quenching study suggests that 3 binds with both BSA and HSA via the sites close to Trp residues. Molecular docking calculations indicate that for both BSA and HSA, binding of 3 to Site I and to an "additional site" is more favorable energetically than binding to Site II.


Asunto(s)
Quelantes/química , Compuestos Ferrosos/química , Lactoglobulinas/química , Albúmina Sérica Bovina/química , Albúmina Sérica Humana/química , Sulfuros/química , Animales , Bovinos , Dicroismo Circular , Humanos , Estructura Molecular
5.
Methods Appl Fluoresc ; 8(3): 035006, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32375137

RESUMEN

Green-emitting water-soluble amino-ketoenole dye AmyGreen is proposed as an efficient fluorescent stain for visualization of bacterial amyloids in biofilms and the detection of pathological amyloids in vitro. This dye is almost non-fluorescent in solution, displays strong green emission in the presence of amyloid fibril of proteins. AmyGreen is also weakly fluorescent in presence to biomolecules that are components of cells, extracellular matrix or medium: nucleic acids, polysaccharides, lipids, and proteins. Thus, the luminescence turn-on behavior of AmyGreen can be utilized for visualization of amyloid components of bacterial biofilm extracellular matrix. Herein we report the application of AmyGreen for fluorescent staining of a number of amyloid-contained bacteria biofilms produced by Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bordetella avium, and Staphylococcus aureus. The effectiveness of AmyGreen was compared to traditional amyloid sensitive dye Thioflavine T. The main advantage of AmyGreen (concentration 10-5 M) is a higher sensitivity in the visualization of amyloid biofilm components over Thioflavine T (10-4 M) as it was revealed when staining E. coli and K. pneumoniae bacterial biofilms. Besides, AmyGreen displays lower cross-selectivity to nucleic acids as demonstrated both in in-solution experiments and upon staining of eukaryotic human mesenchymal stem cells used as amyloid-free negative control over amyloid-rich bacterial biofilms. The results point to a lower risk of false-positive response upon determination of amyloid components of bacterial biofilm using AmyGreen. Co-staining of biofilm by AmyGreen and cellulose sensitive dye Calcofluor White show difference in their staining patterns and localization, indicating separation of polysaccharide-rich and amyloid-rich regions of investigated biofilms. Thus, we suggest the new AmyGreen stain for visualization and differentiation of amyloid fibrils in bacterial biofilms to be used solely and in combination with other stains for confocal and fluorescence microscopy analysis.


Asunto(s)
Amiloide/química , Bacterias/patogenicidad , Colorantes Fluorescentes/uso terapéutico , Biopelículas , Humanos
6.
J Mol Recognit ; 33(1): e2811, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31497916

RESUMEN

Amyloid fibrils are rigid ß-pleated protein aggregates that are connected with series of harmful diseases and at the same time are promising as base for novel nanomaterials. Thus, design of compounds able to inhibit or redirect those aggregates formation is important both for the biomedical aims and for nanotechnology applications. Here, we studied the effect of tetraphenylporphyrins (metal free, their Cu and Pd complexes, and those functionalized by carboxy and amino groups on periphery) on insulin amyloid self-assembling. The strongest impact on insulin aggregation was demonstrated by a metal-free porphyrin bearing four carboxy groups. This compound strongly suppresses insulin aggregation (about 88% reduction in amyloid-sensitive probe emission) inducing formation of fibrils with the length close to this of free insulin (1.7 ± 0.6 µm as compared with 1.4 ± 0.4 µm, respectively) with an essentially reduced tendency to lateral aggregation. Contrarily, the presence of tetraphenylporphyrin containing four amino groups only slightly affects fibrils' morphology and makes weaker impact on insulin aggregation yield (about 44% reduction). This is explained by the ability of aromatic carboxy groups of 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin to interact with complementary protein-binding groups and thus stabilize the supramolecular complex. For 5,10,15,20-(tetra-4-aminophenyl)porphyrin, full protonation takes place in acidic medium of protein aggregation reaction; this results in the high positive charge of TPPN4 (equal or close to +6) and hence higher contribution of coulombic repulsion to interaction of TPPN4 with insulin. One more possible mechanism of the lower inhibition effect of TPPN4 as compared with TPPC4 could be the more restricted possibility of the former as compared with the latter to form H bonds with insulin groups. It was also shown that metal-free, Pd-containing, and Cu-containing tetraphenylporphyrins without peripheral substituents make almost the same impact on the protein self-assembling. We suppose this to be due to coordination saturation of these metal atoms.


Asunto(s)
Amiloide/metabolismo , Insulina/metabolismo , Porfirinas/metabolismo , Agregado de Proteínas/fisiología , Humanos , Unión Proteica/fisiología
7.
RSC Adv ; 9(42): 24218-24230, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35527894

RESUMEN

Cage metal complexes iron(ii) clathrochelates, which are inherently CD silent, were discovered to demonstrate intensive output in induced circular dichroism (ICD) spectra upon their assembly to albumins. With the aim to design clathrochelates as protein-sensitive CD reporters, the approach for the functionalization of one chelate α-dioximate fragment of the clathrochelate framework with two non-equivalent substituents was developed, and constitutional isomers of clathrochelate with two non-equivalent carboxyphenylsulfide groups were synthesized. The interaction of designed iron(ii) clathrochelates and their symmetric homologues with globular proteins (serum albumins, lysozyme, ß-lactoglobulin (BLG), trypsin, insulin) was studied by protein fluorescence quenching and CD techniques. A highly-intensive ICD output of the clathrochelates was observed upon their association with albumins and BLG. It was shown that in the presence of BLG, different clathrochelate isomers gave spectra of inverted signs, indicating the stabilization of opposite configurations (Λ or Δ) of the clathrochelate framework in the assembly with this protein. So, we suggest that the isomerism of the terminal carboxy group determined preferable configurations of the clathrochelate framework for the fixation in the protein binding site. MALDI TOF results show the formation of BLG-clathrochelate complex with ratio 1 : 1. Based on the docking simulations, the binding of the clathrochelate molecule (all isomers) to the main BLG binding site (calyx) in its open conformation is suggested. The above results point that the variation of the ribbed substituents at the clathrochelate framework is an effective tool to achieve the specificity of clathrochelate ICD reporting properties to the target protein.

8.
Metallomics ; 11(2): 338-348, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30516230

RESUMEN

An ability of inherently achiral macrobicyclic metal complexes iron(ii) clathrochelates to acquire an induced CD (ICD) output in the visible spectral range upon interaction with bovine serum albumin (BSA) was recently discovered. In the present work, the CD-reporting properties of iron(ii) clathrochelates to proteins and the thermodynamic parameters of their binding to albumins are evaluated. It is shown that iron(ii) clathrochelates functionalized by six ribbed carboxyphenylsulfide groups are able to discriminate between serum albumins of relative structure (here human and bovine albumins) by giving distinct ICD spectra. Besides, by the variation of the shape and intensity of CD bands, these cage metal complexes reflect the pH-triggered alterations of the tertiary structure of albumins. The constitutional isomerism (ortho-, meta- or para-isomers) of terminal carboxyphenylsulfide groups of iron(ii) clathrochelates strongly affects both the character of their ICD output upon binding with proteins and the parameters of the formed guest-host associates. Using isothermal titration calorimetry, it was determined that cage metal complexes bearing meta- and ortho-isomers of carboxyphenylsulfide groups possess higher association constants (Ka ∼ 2 × 104 M-1) and clathrochelate-to-BSA binding ratios (n = 2) than the para-isomer (Ka ∼ 5 × 103 M-1, n = 1). The iron(ii) clathrochelates are suggested to be potential molecular three-dimensional scaffolds for the design of CD-sensitive reporters able to recognize specific elements of protein surfaces.


Asunto(s)
Dicroismo Circular/métodos , Compuestos Ferrosos/química , Albúmina Sérica/química , Animales , Bovinos , Complejos de Coordinación/química , Humanos , Conformación Molecular , Estructura Molecular , Albúmina Sérica Bovina/química
9.
Dalton Trans ; 47(4): 1036-1052, 2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29257161

RESUMEN

An ability of the ribbed-functionalized iron(ii) clathrochelates to induce a CD output in interactions with a protein, covalent bonding or supramolecular interactions with a low-molecular-weight chiral inductor, was discovered. The interactions of CD inactive, carboxyl-terminated iron(ii) clathrochelates with serum albumin induced their molecular asymmetry, causing an appearance of strong CD signals in the range of 350-600 nm, whereas methyl ester and amide clathrochelate derivatives remained almost CD inactive. The CD spectra of carboxyl-terminated clathrochelates on supramolecular interactions or covalent bonding with (R)-(+)-1-phenylethylamine gave a substantially lower CD output than with albumin, affected by both the solvent polarity and the isomerism of clathrochelate's ribbed substituents. In supramolecular assemblies, the bands were most intensive for ortho-substituted carboxyl-terminated clathrochelates. The ortho- and meta-phenylethylamide cage complexes in tetrachloromethane inverted the signs of their CD bands compared with those in acetonitrile. It was suggested that the tris-dioximate metal clathrochelates possess a Russian doll-like molecular system. Because of the distorted TP-TAP geometry, their coordination polyhedron had no inversion centre and possessed an inherent chirality together with the equiprobability of its left(Λ)- and right(Δ)-handle twists. The selective fixation of one of these C3-distorted conformations resulted in the appearance of the CD signal in the range of their visible metal-to-ligand charge transfer bands. Calculations by DFT methods were used to illustrate the possible conformations of the macrobicyclic molecules, as well as the intramolecular interactions between the cage framework and optically active distal substituents responsible for the chirality induction of the metal-centred coordination polyhedra.

10.
Nanoscale Res Lett ; 12(1): 294, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28445996

RESUMEN

Formation and electronic excitation energy transfer process in the nanosystem consisting of Ce0.85Tb0.15F3 nanoparticles, cetrimonium bromide (CTAB) surfactant, and chlorin e6 photosensitizer were studied. It was shown that chlorin e6 molecules bind to Ce0.85Tb0.15F3 NP in the presence of CTAB forming thus Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem. We consider that binding occurs via chlorin e6 embedding in the shell of CTAB molecules, formed around NP. In the Ce0.85Tb0.15F3 NP-CTAB-chlorin e6 nanosystem, electronic excitation energy transfer from Ce3+ to chlorin e6 takes place both directly (with the 0.33 efficiency for 2 µM chlorin e6) and via Tb3+.

11.
J Mol Recognit ; 30(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28295701

RESUMEN

Amyloid fibrils are insoluble protein aggregates whose accumulation in cells and tissues is connected with a range of pathological diseases. We studied the impact of 2 metal complexes (axially coordinated Hf phthalocyanine and iron (II) clathrochelate) on aggregation of insulin and lysozyme. For both proteins, the host-guest interaction with these compounds changes the kinetics of fibrillization and affects the morphology of final aggregates. The Hf phthalocyanine is a very efficient inhibitor of insulin fibrillization; in its presence, only very low amounts of fibrils with the diameters of 0.8 to 5 nm and spherical aggregates were found. Effective concentration of fibrillization inhibition (IC50 ) was estimated to be 0.11 ± 0.04 µM. The clathrochelate induced the formation of thin fibrils with the diameters of 0.8 to 2.5 nm; IC50 was estimated as 20 ± 9 µM. The lysozyme fibrillization remained quite intensive in the presence of the studied compounds; they induced the formation of long filaments (the length up to 2.5 µm, the diameters of 1.5-3.5 nm). These fibrils noticeably differed from those of free lysozyme short linear species (the diameters of 3-5 nm, the length up to 0.6 µm). Thinning and elongation of fibrils suggest that the metal complexes bind mainly to the grooves of protofilaments; this hinders the stacking of early aggregates or protofilaments together but does not hinder their growth. The image of the fibril separated into 2 protofilaments allows suggesting that the fibril formation occurs via the growth of the parallel protofilaments with their subsequent twisting in the fibril. The changes of the lysozyme intrinsic fluorescence indicate that both metal complexes interact with the protein during the stage of the fibrillar seeds formation.


Asunto(s)
Amiloide/antagonistas & inhibidores , Complejos de Coordinación/química , Insulina/química , Compuestos Macrocíclicos/química , Muramidasa/química , Amiloide/química , Amiloide/ultraestructura , Animales , Pollos , Complejos de Coordinación/síntesis química , Hafnio/química , Humanos , Indoles/química , Hierro/química , Isoindoles , Cinética , Compuestos Macrocíclicos/síntesis química , Agregado de Proteínas , Unión Proteica , Soluciones
12.
Anal Biochem ; 484: 9-17, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25963892

RESUMEN

The effect of various N,N'-substituents in the molecule of benzothiazole trimethine cyanine dye on its ability to sense the amyloid aggregates of protein was studied. The dyes are low fluorescent when free and in the presence of monomeric proteins, but their emission intensity sharply increases in complexes with aggregated insulin and lysozyme, with the fluorescence quantum yield reaching up to 0.42. The dyes carrying butyl, hydroxyalkyl, and phenylalkyl groups as N,N'-substituents possess the increased fluorescent sensitivity to fibrillar lysozyme, whereas the ones carrying quaternary amino groups are preferably sensitive to fibrillar insulin. This fluorescent sensitivity preference provided by the N,N'-functional groups could be explained by the interaction between these groups and protein side chains. The strongest fluorescent response (up to 70times) and the same sensitivity to aggregates of both proteins were exhibited by the dye D-51 carrying N-sulfoalkyl group. The studied cyanines allow the detection of fibrillar aggregates in the wide range up to 0.8 to 300µg/ml and permit monitoring the protein aggregation kinetics with high reproducibility. The modification of trimethine cyanine dyes by functional substituents in N,N'-positions is suggested as a tool for the design of fluorescent molecules with the enhanced fluorescent sensitivity to the fibrillar aggregates of proteins.


Asunto(s)
Amiloide/química , Carbocianinas/química , Colorantes Fluorescentes/química , Multimerización de Proteína , Amiloide/análisis , Tampones (Química) , Humanos , Concentración de Iones de Hidrógeno , Insulina/análisis , Insulina/química , Cinética , Límite de Detección , Muramidasa/análisis , Muramidasa/química , Agregado de Proteínas , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Relación Estructura-Actividad
13.
Bioorg Med Chem ; 22(6): 1883-8, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24565971

RESUMEN

The macrocyclic compounds mono- and bis-iron(II) clathrochelates were firstly studied as potential anti-fibrillogenic agents using fluorescent inhibitory assay, atomic force microscopy and flow cytometry. It is shown that presence of the clathrochelates leads to the change in kinetics of insulin fibrillization reaction and reduces the amount of formed fibrils (up to 70%). The nature of ribbed substituent could determine the activity of clathrochelates-the higher inhibitory effect is observed for compounds containing carboxybenzenesulfide groups, while the inhibitory properties only slightly depend on the size of complex species. The mono- and bis-clathrochelate derivatives of meta-mercaptobenzoic acid have close values of IC50 namely 16 ± 2 and 24 ± 5 µM, respectively. The presence of clathrochelates decreases the fibril diameter from 5-12 nm for free insulin fibrils to 3-8 nm for these formed in the clathrochelate presence, it also prevents the lateral aggregation of mature fibrils and formation of superfibrillar clusters. However the addition of clathrochelate results in more heterogeneous (both by size and structure) insulin aggregates population as compared to the free insulin. This way, cage complexes-iron(II) clathrochelates are proposed as efficient agents able to suppress the protein aggregation processes.


Asunto(s)
Amiloide/antagonistas & inhibidores , Compuestos Ferrosos/farmacología , Insulina/química , Compuestos Macrocíclicos/farmacología , Relación Dosis-Respuesta a Droga , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/química , Humanos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Conformación Molecular , Relación Estructura-Actividad
14.
J Fluoresc ; 23(5): 889-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23553641

RESUMEN

Interaction of the iron(II) mono- and bis-clathrochelates with bovine serum albumin (BSA), ß-lactoglobulin, lysozyme and insulin was studied by the steady-state and time-resolved fluorescent spectroscopies. These cage complexes do not make significant impact on fluorescent properties of ß-lactoglobulin, lysozyme and insulin. At the same time, the monoclathrochelates strongly quench a fluorescence intensity of BSA and substantially decrease its excited state lifetime due to their binding to this protein. This occurs due to the excitation energy transfer from a tryptophan residue to a cage molecule or/and to the change of the tryptophan nearest environment caused by either clathrochelate binding or an alteration of the BSA conformation. The effect of the iron(II) bis-clathrochelate on BSA fluorescence is much weaker as compared to its monomacrobicyclic analogs as a result of an increase in its size.


Asunto(s)
Compuestos Ferrosos/química , Fluorescencia , Insulina/química , Lactoglobulinas/química , Muramidasa/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Conformación Molecular , Muramidasa/metabolismo , Espectrometría de Fluorescencia
15.
Anal Biochem ; 420(2): 115-20, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22005321

RESUMEN

A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications.


Asunto(s)
Aminas/química , Compuestos de Boro/química , Colorantes Fluorescentes/química , Muramidasa/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Espectrometría de Fluorescencia , Especificidad por Sustrato
16.
Bioorg Med Chem ; 20(1): 330-4, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22154293

RESUMEN

Series of phthalocyanines of zirconium containing lysine, citric, nonanoic acid residues and dibenzolylmethane groups as out-of-plane ligands are firstly studied as inhibitors of fibrillogenesis using cyanine-based fluorescent inhibitory assay. It was shown that studied phthalocyanines at concentration of 20µM inhibited aggregation reaction on 38.5-57.6% and inhibitory activity of phthalocyanines depended on the chemical nature of out-of-plane ligand. For the most active compound PcZrLys(2) (zirconium phthalocyanine containing lysine fragment) the efficient inhibitor concentration was estimated to be 37µM. AFM studies have shown that in the presence of PcZrLys(2) the inhibition of fibrils formation and formation of spherical oligomeric aggregates took place. Due to the ability of phthalocyanines to decrease efficiently protein aggregation into the amyloid fibrils, modification of phthalocyanine molecules via out-of-plane substitutions was proposed as approach for design of anti-fibrillogenic agents with required properties.


Asunto(s)
Amiloide/antagonistas & inhibidores , Indoles/química , Circonio/química , Amiloide/metabolismo , Isoindoles , Ligandos , Lisina/química , Microscopía de Fuerza Atómica
17.
J Fluoresc ; 21(1): 223-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20809136

RESUMEN

Two of earlier reported dsDNA sensitive cyanine dyes-monomethine Cyan 40 and meso-substituted trimethine Cyan 2 were studied for their ability to interact with non-canonical DNA conformations. These dyes were characterized by spectral-luminescent methods in the presence of G-quadruplex, triplex and dsDNA motifs. We have demonstrated that Cyan 2 binds strongly and preferentially to triple- and quadruple-stranded DNA forms that results in a strong enhancement of the dye fluorescence, as compared to dsDNA, while Cyan 40 form fluorescent complexes preferentially only with the triplex form. Highly fluorescent complexes of Cyan 2 with DNA triplexes and G-quadruplexes and Cyan 40 with DNA triplexes are very stable and do not dissociate during gel electrophoresis, leading to preferential staining of the above DNA forms in gels. The data presented point to the intercalation mechanism of the Cyan 2 binding to G4-DNA, while the complexes of Cyan 40 and Cyan 2 with triplex DNA are believed to be formed via groove binding mode. The Cyan dyes can provide a highly sensitive method for detection and quantification of non-canonical structures in genome.


Asunto(s)
Carbocianinas/química , ADN/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares
18.
J Fluoresc ; 21(2): 775-84, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21128105

RESUMEN

In present paper series of trimethine cyanines modified in 5,5'- or 6,6'- position with hydroxy- or methoxy- substituents is studied for their ability to interact selectively with fibrillar formations. Processes of dye aggregation that accompany this interaction were also investigated. Meso-methyl trimethynecyanines with 5,5'- methoxy (7519) and hydroxy (7515) substituents strongly (up to 40 times) increase fluorescence intensity in the presence of fibrillar insulin, and also give noticeable fluorescent response on the presence of various aggregated proteins (lysozyme, ß-lactoglobulin, α-synuclein A53T). 7519 and 7515 dyes can be used for fluorometric detection of fibrillar insulin at concentrations of approximately 1.5-120 microg/ml. For meso-ethyl substituted dye 7514 the ability to form H- and J-aggregates upon interaction with insulin fibrils was suggested. The model of the H- and J-aggregate packing in the protein fibrillar structure has been proposed.


Asunto(s)
Amiloide/química , Carbocianinas/química , Colorantes Fluorescentes/química , Multimerización de Proteína , Animales , Bovinos , Humanos , Insulina/química , Modelos Lineales , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia
19.
J Fluoresc ; 20(6): 1267-74, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20490633

RESUMEN

A key feature of Parkinson's disease is the formation and accumulation of amyloid fibrils of the natively unfolded protein α-synuclein (ASN) inside neurons. Recently we have proposed novel sensitive monomethinecyanine dye T-284 as fluorescent probe for quantitative detection of ASN amyloid fibrils. In this study the T-284 dye complex with ASN fibril was characterized by means of fluorescence anisotropy, atomic force microscopy and time-resolved fluorescence techniques to give further insights into the mode of dye interaction with amyloid fibrils. The fluorescence anisotropy of T-284 was shown to noticeably increase upon addition of aggregated proteins indicating on stable dye/amyloid fibril complex formation. AFM imaging of fibrillar wild-type ASN revealed differences in heights between ASN fibrils alone and in presence of the T-284 dye (6.37 ± 1.0 nm and 8.0 ± 1.1 nm respectively), that is believed to be caused by embedding of T-284 dye molecules in the "binding channel" running along the fibril. Fluorescence decay analysis of the T-284 in complexes with fibrillar ASN variants revealed the fluorescence lifetime values for T-284/fibril complexes to be an order of magnitude higher as compared to the free dye. Also, the fluorescence decay of free T-284 was bi-exponential, while dye bound to protein yields tri-exponential decay. We suppose that in complexes with fibrillar ASN variants T-284 dye might exist in different "populations" due to interaction with fibrils in different conformers and ways. The exact binding mode of T-284 with ASN fibrils needs further studies. Studied parameters of dye/amyloid fibril complexes are important for the characterization and screening of newly-developed amyloid-sensitive dyes.


Asunto(s)
Carbocianinas/química , Colorantes Fluorescentes/química , alfa-Sinucleína/química , Polarización de Fluorescencia , Microscopía de Fuerza Atómica , Estructura Molecular
20.
J Fluoresc ; 20(4): 865-72, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20198411

RESUMEN

Spectral-fluorescent properties of benzothiazole styryl monomer (Bos-3) and homodimer (DBos-21) dyes in presence of DNA were studied. The dyes enhance their fluorescence intensity in 2-3 orders of magnitude upon interaction with DNA. Studied styrylcyanines in DNA presence demonstrate rather high values of two-photon absorption (TPA) cross-section, which are comparable with the values of TPA cross section of the rhodamine dyes. An applicability of the styrylcyanines as probes for the fluorescence microscopy of living cells was studied. It was shown that both dyes are cell-permeable but homodimer dye DBos-21 produces noticeably brighter staining of HeLa cells comparing with monomer dye Bos-3. Molecules of DBos-21 initially bind to the nucleic acids-containing cell organelles (presumable mitochondria) and are able to penetrate into the cell nucleus. Thus, homodimer styryl DBos-21 dye is viewed as efficient stain for single-photon and two-photon excitation fluorescence imaging of living cells.


Asunto(s)
ADN/análisis , Colorantes Fluorescentes/química , Rayos Láser , Microscopía Fluorescente/métodos , Fotones , Estirenos/química , Tiazoles/química , Absorción , Animales , Supervivencia Celular , ADN/química , Dimerización , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...