Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(7): 075001, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38427892

RESUMEN

Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, self-modulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma-based accelerators and represent the first characterization of hosing.

2.
J Opt Soc Am A Opt Image Sci Vis ; 38(1): 108-114, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33362158

RESUMEN

The channeling of laser pulses in waveguides filled with a rare plasma is one of the promising techniques of laser wakefield acceleration. A solid-state capillary can precisely guide tightly focused pulses. Regardless of the material of the capillary, its walls behave like a plasma under the influence of a high-intensity laser pulse. Therefore, the waveguide modes in the capillaries have a universal structure, which depends only on the shape of the cross-section. Due to the large ratio of the capillary radius to the laser wavelength, the modes in circular capillaries differ from classical TE and TM modes. We consider the structure of capillary modes in a circular capillary, calculate the attenuation rates, discuss the mode expansion of the incident pulse using minimal simplifications, and analyze the accuracy of commonly used approximations. The attenuation length for such modes is two orders of magnitude longer than that obtained from the classical formula, and the incident pulse of the proper radius can transfer up to 98% of its initial energy to the fundamental mode. However, finding eigenmodes in capillaries of arbitrary cross-sections is a complex mathematical problem that remains to be solved.

3.
Nat Commun ; 11(1): 4753, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958741

RESUMEN

Metre-scale plasma wakefield accelerators have imparted energy gain approaching 10 gigaelectronvolts to single nano-Coulomb electron bunches. To reach useful average currents, however, the enormous energy density that the driver deposits into the wake must be removed efficiently between shots. Yet mechanisms by which wakes dissipate their energy into surrounding plasma remain poorly understood. Here, we report picosecond-time-resolved, grazing-angle optical shadowgraphic measurements and large-scale particle-in-cell simulations of ion channels emerging from broken wakes that electron bunches from the SLAC linac generate in tenuous lithium plasma. Measurements show the channel boundary expands radially at 1 million metres-per-second for over a nanosecond. Simulations show that ions and electrons that the original wake propels outward, carrying 90 percent of its energy, drive this expansion by impact-ionizing surrounding neutral lithium. The results provide a basis for understanding global thermodynamics of multi-GeV plasma accelerators, which underlie their viability for applications demanding high average beam current.

5.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180418, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31230571

RESUMEN

In this article, we briefly summarize the experiments performed during the first run of the Advanced Wakefield Experiment, AWAKE, at CERN (European Organization for Nuclear Research). The final goal of AWAKE Run 1 (2013-2018) was to demonstrate that 10-20 MeV electrons can be accelerated to GeV energies in a plasma wakefield driven by a highly relativistic self-modulated proton bunch. We describe the experiment, outline the measurement concept and present first results. Last, we outline our plans for the future. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

6.
Phys Rev Lett ; 112(19): 194801, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24877943

RESUMEN

A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, most of its energy is transferred to plasma electrons. The electrons gain substantial transverse momentum and escape the plasma radially, which gives rise to a strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

7.
Phys Rev Lett ; 107(14): 145003, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-22107203

RESUMEN

It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(4 Pt 2): 046405, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15169104

RESUMEN

A wide region of beam parameters is numerically scanned and the dependence of wakefield properties on the beam length and current is clarified for the blowout regime of beam-plasma interaction. The main regimes of the plasma response are found, which qualitatively differ in the plasma behavior. To characterize the efficiency of the energy exchange between the beam and the plasma, the energy flux through the comoving window is introduced. Scalings of the energy flux for the linear plasma response and the main blowout regimes are studied. The most efficient energy transfer occurs in the so-called "strong beam" regime of interaction. For this regime, analytical approximations for various aspects of the plasma response are obtained.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(3 Pt 2): 036503, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11308781

RESUMEN

We obtain necessary conditions for the plasma compensation to work in muon colliders. To this end, we analyze the suppression of beam fields by the plasma, collisional diffusion of the return plasma current, possible beam filamentation, and dynamics of plasma ions. We show that a good compensation requires very short beams and allows little freedom in choice of the plasma density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...