Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Z Med Phys ; 30(2): 104-115, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31866116

RESUMEN

PURPOSE: To correct for the non-homogeneous receive profile of a phased array head coil in sodium magnetic resonance imaging (23Na MRI). METHODS: 23Na MRI of the human brain (n = 8) was conducted on a 7T MR system using a dual-tuned quadrature 1H/23Na transmit/receive birdcage coil, equipped with a 32-channel receive-only array. To correct the inhomogeneous receive profile four different methods were applied: (1) the uncorrected phased array image and an additionally acquired birdcage image as reference image were low-pass filtered and divided by each other. (2) The second method substituted the reference image by a support region. (3) By averaging the individually calculated receive profiles, a universal sensitivity map was obtained and applied. (4) The receive profile was determined by a pre-scanned large uniform phantom. The calculation of the sensitivity maps was optimized in a simulation study using the normalized root-mean-square error (NRMSE). All methods were evaluated in phantom measurements and finally applied to in vivo 23Na MRI data sets. The in vivo measurements were partial volume corrected and for further evaluation the signal ratio between the outer and inner cerebrospinal fluid compartments (CSFout:CSFin) was calculated. RESULTS: Phantom measurements show the correction of the intensity profile applying the given methods. Compared to the uncorrected phased array image (NRMSE = 0.46, CSFout:CSFin = 1.71), the quantitative evaluation of simulated and measured intensity corrected human brain data sets indicates the best performance utilizing the birdcage image (NRMSE = 0.39, CSFout:CSFin = 1.00). However, employing a support region (NRMSE = 0.40, CSFout:CSFin = 1.17), a universal sensitivity map (NRMSE = 0.41, CSFout:CSFin = 1.05) or a pre-scanned sensitivity map (NRMSE = 0.42, CSFout:CSFin = 1.07) shows only slightly worse results. CONCLUSION: Acquiring a birdcage image as reference image to correct for the receive profile demonstrates the best performance. However, when aiming to reduce acquisition time or for measurements without existing birdcage coil, methods that use a support region as reference image, a universal or a pre-scanned sensitivity map provide good alternatives for correction of the receive profile.


Asunto(s)
Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Isótopos de Sodio , Diseño de Equipo , Humanos , Fantasmas de Imagen
2.
Magn Reson Med ; 83(1): 203-213, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31452259

RESUMEN

PURPOSE: Potassium ions (K+ ) play a critical role in cardiac electrophysiology, and changes in their concentration reflect pathophysiological processes related to cardiovascular diseases. Here, we investigated the feasibility of in vivo 39 K MRI of the human heart. To achieve this, we developed, evaluated, and applied a 39 K/1 H RF coil, which is tailored for 39 K MRI of human heart at 7.0T. METHODS: The performance of the 39 K/1 H RF coil was evaluated by electromagnetic field and specific absorption ratio simulations using 2 (male/female) human voxel models. The RF coil was evaluated at the bench and applied in an in vivo proof-of-principle study involving 7 healthy volunteers. The experiments were performed using a 7.0T whole-body MR system in conjunction with a 3D density-adapted projection reconstruction imaging technique. RESULTS: For in vivo 39 K MRI of the human heart, a nominal spatial resolution of 14.5 × 14.5 × 14.5 mm3 within a total scan time of 30 min was achieved. The average SNR within the heart was 9.6 ± 2.4. CONCLUSION: This work validates the design of a 39 K/1 H RF coil for cardiac MR at 7.0T and demonstrates for the first time in vivo the feasibility of 39 K MRI of the human heart.


Asunto(s)
Corazón/diagnóstico por imagen , Iones , Imagen por Resonancia Cinemagnética , Miocardio/metabolismo , Potasio/análisis , Adulto , Campos Electromagnéticos , Estudios de Factibilidad , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Masculino , Fantasmas de Imagen , Ondas de Radio , Relación Señal-Ruido , Transductores
3.
Magn Reson Med ; 82(1): 159-173, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30859615

RESUMEN

PURPOSE: To quantify the tissue sodium concentration (TSC) in cardiac 23 Na MRI. To evaluate the influence of different correction methods on the measured myocardial TSC. METHODS: 23 Na MRI of four healthy subjects was conducted at a whole-body 7T MRI system using an oval-shaped 23 Na birdcage coil. Data acquisition was performed with a density-adapted 3D radial pulse sequence using a golden angle projection scheme. 1 H MRI data were acquired at a 3T MRI system to generate a myocardial mask. Retrospective cardiac and respiratory gating were used to reconstruct 23 Na MRI data in the diastolic phase and exhaled state. B0 and B1 inhomogeneity and partial volume (PV) effects were corrected. Relaxation times and TSC of ex vivo blood samples and calf muscle were determined. These values were used in the PV correction to estimate myocardial TSC, which was compared with the measured TSC of calf muscle. RESULTS: Without any correction the measured myocardial TSC was (54 ± 5) mM. The applied correction methods reduced these values by (48 ± 5)% to (29 ± 3) mM, where PV correction had the largest effect (reduction of (34 ± 1)%). Respiratory and cardiac motion gating decreased the concentrations by (11 ± 1)%. With the applied setup, the corrections of B0 and B1 inhomogeneity (reduction of (3 ± 2)%) had negligible influences on TSC values. The resulting myocardial TSC was approximately 1.4-fold higher than the measured TSC of calf muscle tissue of the same healthy subjects ((20 ± 3) mM). CONCLUSION: For quantitative human cardiac 23 Na MRI several corrections are needed and ranked for our setup: PV correction, respiratory and cardiac gating, correction for B1 inhomogeneity effects.


Asunto(s)
Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Miocardio/química , Sodio/análisis , Adulto , Algoritmos , Femenino , Humanos , Masculino , Fantasmas de Imagen , Técnicas de Imagen Sincronizada Respiratorias , Procesamiento de Señales Asistido por Computador , Isótopos de Sodio/química
4.
Med Phys ; 42(7): 4069-79, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26133607

RESUMEN

PURPOSE: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 µm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. METHODS: Gafchromic(®) HD-810 and HD-V2 films are exposed to MRT fields at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. RESULTS: The dose was measured with a resolution of 5 × 1000 µm(2) and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 µm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. CONCLUSIONS: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required. Dosimetry at low photon energies should be performed with great caution due to the energy sensitivity of the films. In this respect, HD-V2 films showed to have an advantage over HD-810 films. However, HD-810 films have a lower statistical noise level. When a higher resolution is required, e.g., for the dosimetry of pencil beam irradiations, noise may render HD-V2 films inapplicable.


Asunto(s)
Dosimetría por Película/instrumentación , Dosimetría por Película/métodos , Microscopía/instrumentación , Microscopía/métodos , Radioterapia/instrumentación , Radioterapia/métodos , Calibración , Simulación por Computador , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Incertidumbre , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA