Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730846

RESUMEN

Bi3+-doped sesquioxides exhibit dual emissions, marked by distinct Stokes shift and bandwidth, meaning unraveling their underlying origins is particularly intriguing. In this study, we employ first-principles calculations to investigate the luminescence mechanisms within the M2O3:Bi3+ (M = Sc, Y, Gd, Lu) series, with the goal of addressing the posed inquiry. Our investigation commences with the analysis of the site occupancy and charge state of bismuth ions in the two cationic sites through formation energy calculations. Additionally, we examine the local coordination environments for various excited states of Bi3+ dopants, including the 3P0,1 state and two types of charge transfer states, by evaluating their equilibrium geometric structures. The utilization of the hybrid functional enables us to obtain results of electronic structures and optical properties comparable with experiments. Importantly, the calculated energies for the 6s-6p transitions of Bi3+ dopants in the M2O3 series align well with the observed dual-emission energies. This alignment challenges the conventional spectroscopic sense that emission bands with large Stokes shifts can be exclusively ascribed to charge transfer transitions. Consequently, the integration of experimental and theoretical approaches emerges as the optimal strategy for designing novel Bi3+-doped phosphors.

2.
Materials (Basel) ; 17(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612222

RESUMEN

In this study, we conducted an extensive investigation into broadband near-infrared luminescence of Cr3+-doped Ca3Y2Ge3O12 garnet, employing first-principles calculations within the density functional theory framework. Our initial focus involved determining the site occupancy of Cr3+ activator ions, which revealed a pronounced preference for the Y3+ sites over the Ca2+ and Ge4+ sites, as evidenced by the formation energy calculations. Subsequently, the geometric structures of the excited states 2E and 4T2, along with their optical transition energies relative to the ground state 4A2 in Ca3Y2Ge3O12:Cr3+, were successfully modeled using the ΔSCF method. Calculation convergence challenges were effectively addressed through the proposed fractional particle occupancy schemes. The constructed host-referred binding energy diagram provided a clear description of the luminescence kinetics process in the garnet, which explained the high quantum efficiency of emission. Furthermore, the accurate prediction of thermal excitation energy yielded insights into the thermal stability of the compound, as illustrated in the calculated configuration coordinate diagram. More importantly, all calculated data were consistently aligned with the experimental results. This research not only advances our understanding of the intricate interplay between geometric and electronic structures, optical properties, and thermal behavior in Cr3+-doped garnets but also lays the groundwork for future breakthroughs in the high-throughput design and optimization of luminescent performance and thermal stability in Cr3+-doped phosphors.

3.
Mater Horiz ; 11(5): 1294-1304, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38168978

RESUMEN

Lead halide perovskite nanocrystals (NCs) are highly promising for backlighting display applications due to their high photoluminescence quantum yields (PLQYs) and wide color gamut values. However, the practical applications of blue emitters are limited due to the toxicity of lead, unstable structure, and unsatisfactory PLQY. Herein, we report the successful synthesis of divalent europium-based perovskite CsEuBr3 NCs using a modified hot injection method. By optimizing the reaction conditions, the CsEuBr3 NCs display a deep-blue emission at 443 nm with a full width at half maximum (FWHM) of 28.5 nm, a color purity of 99.61%, and a record high PLQY of 93.51% for deep-blue narrow-band emissive lead-free perovskite NCs as far as we know. The emission mechanism of CsEuBr3 NCs is proved through first-principles calculations and spectral analysis. Notably, the CsEuBr3 NCs exhibit remarkable stability when exposed to high temperature, UV irradiation, and long-term sealed storage. The incorporation of CsEuBr3 NCs into polydimethylsiloxane (PDMS) serving as a converter is utilized for white light-emitting devices (WLEDs). WLEDs for backlight displays achieves a wide color gamut of 127.1% of the National Television System Committee standard (NTSC), 94.9% coverage of the ITU-R Recommendation BT.2020 (Rec.2020), and their half-lifetime is up to 1677 h, providing a promising pathway for highly efficient, environment-friendly and practical liquid crystal display backlights.

4.
Angew Chem Int Ed Engl ; 61(33): e202207454, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35726532

RESUMEN

Ultra-broadband near-infrared (NIR) luminescent materials are the most important component of NIR light-emitting devices (LED) and are crucial for their performance in sensing applications. A major challenge is to design novel NIR luminescent materials to replace the traditional Cr3+ -doped systems. We report an all-inorganic bismuth halide perovskite Cs2 AgBiCl6 single crystal that achieves efficient broadband NIR emission by introducing Na ions. Experiments and density functional theory (DFT) calculations show that the NIR emission originates from self-trapped excitons (STE) emission, which can be enhanced by weakening the strong coupling between electrons and phonons. The high photoluminescence quantum efficiency (PLQY) of 51 %, the extensive full width at half maximum (FWHM) of 270 nm and the stability provide advantages as a NIR luminescent material. The single-crystal-based NIR LED demonstrated its potential applications in NIR spectral detection as well as night vision.

5.
Phys Chem Chem Phys ; 24(22): 14064-14071, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35640264

RESUMEN

Luminescent ns2 centers have shown great potential for applications as phosphors and scintillators. First-principles calculations based on density functional theory are performed to systematically analyze the luminescent centers of isolated and paired Bi3+(6s2) ions in layered LnOCl (Ln = Y, Gd, La) crystals. The spin-orbit coupling and orbital hybridization both show important effects on the luminescence properties. The luminescence of the isolated Bi ion is confirmed as the interconfigurational transition of 3P0,1 → 1S0. For the Bi pair, the adiabatic potential energy surfaces are calculated and the charge transfer excited state is the most stable, which accounts for the visible emission of a large Stokes shift. Furthermore, the electron-hole pair separation, absorption, excitonic state and emission of the material with fully-concentrated Bi3+, BiOCl, are discussed. This study shows that the first-principles calculations can serve as an effective tool for the photoluminescence analysis and engineering of materials activated with isolated, paired and even fully-concentrated ns2 ions.

6.
Inorg Chem ; 61(19): 7654-7662, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35512417

RESUMEN

Ce3+-doped LiSr4(BO3)3 phosphors have been prepared by a high-temperature solid-state reaction method, and structural refinement of the host compound has been performed. The excitation and emission spectra in the vacuum ultraviolet-ultraviolet-visible range at cryogenic temperatures reveal that Ce3+ ions preferentially occupy eight-coordinated Sr2+ sites in LiSr4(BO3)3. Such experimental attribution is well corroborated by the calculated 4f-5d transition energies and defect formation energies of Ce3+ ions at two distinct Sr2+ sites in the first-principles framework. In addition, the doping concentration-dependent luminescence and the temperature-dependent luminescence are systematically investigated by luminescence intensity and lifetime measurements, respectively. This shows that concentration quenching does not occur in the investigated doping range, but inhomogeneous broadening exists in the concentrated samples. With the estimated thermal quenching activation energy, the discussions on the thermal quenching mechanisms suggest that the thermal-ionization process of the 5d electron is a dominant channel for thermal quenching of Ce3+ luminescence, despite the fact that thermally activated concentration quenching cannot be excluded for the highly doped samples. Finally, the X-ray excited luminescence measurement demonstrates the promising applications of the phosphors in X-ray detection.

7.
Inorg Chem ; 60(21): 16614-16625, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648277

RESUMEN

Rare-earth vanadates, niobates, and tantalates have shown self-activated and Bi3+-activated emissions. Their intrinsic emission has been attributed to self-trapped excitons (STEs), but the detailed information concerning the geometric and electronic structures of the excited states has remained unknown. Regarding the Bi3+ dopants in these hosts, the luminescence has been attributed to two different mechanisms, i.e., Bi3+↔ (V/Nb/Ta)5+ metal-to-metal charge transfer and interconfigurational (3P0,1 → 1S0) transition. Here, first-principles calculations using hybrid functionals are employed to resolve these issues. The STEs are shown to be composed of an electron localized on an individual vanadium, niobium, or tantalum ion and a hole localized on a single nearest-neighbor oxygen ion that is not shared by covalent complexes, and the bond length of the (V/Nb/Ta)-O bond with oxygen accommodating the hole is significantly elongated. The Bi3+-related emission is identified as the recombination of an exciton with a hole and an electron localized correspondingly at Bi3+ and (V/Nb/Ta)5+ ions, while the excitation is dominated by the 6s → 6p transition of Bi3+. Furthermore, Bi3+ has a hole trap level in all of the hosts considered with the trap levels in the vacuum-referred binding energy diagram being nearly flat but has an electron trap level only in rare-earth tantalates. Furthermore, the long-wavelength emission observed in niobates and tantalates is interpreted based on our calculations to be excitons bound to intrinsic defects. The insights gained in this work deepen our understanding of the STEs and form the basis for interpreting similar luminescence phenomena in other ternary closed-shell d0 transition-metal oxides. The clarification of Bi3+-related transitions and the analyses with the vacuum-referred binding energy diagram may find applications for the design and optimization of Bi3+-activated phosphors.

8.
Inorg Chem ; 60(7): 4434-4446, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33735577

RESUMEN

Bismuth ion-doped phosphate crystals have shown rich luminescence phenomena. However, the complexity and variety of Bi3+-related transitions bring great challenges to the understanding of the underlying mechanisms, rendering it hard to rationally design new phosphors and optimize their performance. In this work, we perform first-principles calculations based on the generalized gradient approximation of density functional to obtain the excited state equilibrium geometric structures and then calculate the electronic structures for various Bi3+-related excited states in phosphates RPO4:Bi3+ (R = Y, Lu, La) by utilizing the hybrid density functional method. The experimentally measured excitation and emission features are well interpreted by our theoretical calculations. Specifically, we reveal that the emission in LaPO4:Bi3+ is of charge transfer nature, whereas the dominant emission in YPO4:Bi3+ or LuPO4:Bi3+ is the characteristic A band emission. Trapped holes above the valence band maximum due to intrinsic defects are deemed to play a role in the charge-transfer emission of LaPO4. Our calculations show that the excited state of the Bi3+ pair in YPO4 or LuPO4 is (Bi3+-Bi3+)*, rather than Bi2+-Bi4+. Such a Bi3+ pair contributes to the longer wavelength emission. Furthermore, our calculations on charge transition levels show that Bi3+ ions can act as electron and hole traps in RPO4 (R = Y, Lu, La). Our work indicates that first-principles calculations can be useful in exploring the diverse luminescence processes in Bi3+-doped inorganic insulators.

9.
Phys Chem Chem Phys ; 22(27): 15632-15639, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32617539

RESUMEN

The thermal stability of the phosphors in phosphor-converted light-emitting diodes (LEDs) plays an important role in the practical application of lighting. Herein, the Mn2+-based red-emitting phosphors of pure and Eu2+-doped Sr9MnLi(PO4)7 (SMPO) samples were prepared using the high temperature solid-state reaction method. The crystal field environment around the Mn2+ ions was analyzed by combining the results of photoluminescence excitation spectroscopy and Tanabe-Sugano diagrams. By comparing the results of X-ray photoelectron spectroscopy, two additional bands centered at about 129.8 eV and 130.7 eV were found in the Eu2+-doped sample, which corresponded to the chemical states of P 2p3/2 and P 2p1/2. Two different sets of emission spectra were observed for Sr9MnLi(PO4)7:5%Eu2+ (SMPO:Eu2+) on employing the time-resolved technique. The emission peaks centered at 615 nm and 661 nm were attributed to Mn2+ and Eu2+ ions, respectively. The thermal quenching behaviors of Eu2+ and Mn2+ were investigated in the temperature range of 300-620 K and the thermal quenching mechanisms are given in this work. Systematic research on the luminescent properties of Eu2+ and Mn2+ ions in the SMPO:Eu2+ phosphor contributes to the understanding of the thermal stability and aids in the development of Mn2+-based red-emitting phosphors.

10.
J Phys Chem A ; 122(17): 4306-4312, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29648832

RESUMEN

First-principles calculations were carried out for the electronic structures of Ce3+ in calcium aluminate phosphors, CaAl2O4, and their effects on luminescence properties. Hybrid density functional approaches were used to overcome the well-known underestimation of band gaps of conventional density functional approaches and to calculate the energy levels of Ce3+ ions more accurately. The obtained 4f-5d excitation and emission energies show good consistency with measured values. A detailed energy diagram of all three sites is obtained, which explains qualitatively all of the luminescent phenomena. With the results of energy levels calculated by combining the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) and the constraint occupancy approach, we are able to construct a configurational coordinate diagram to analyze the processes of capture of a hole or an electron and luminescence. This approach can be applied for systematic high-throughput calculations in predicting Ce3+ activated luminescent materials with a moderate computing requirement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...